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Abstract. This paper presents the Bayesian inference framework enhanced by analytical
approximations for uncertainty quantification and propagation and parameter estimation.
A Gaussian distribution is used to approximate the posterior distribution of the uncer-
tain parameters. The most probable value of the parameters is obtained by minimizing
the function defined as the minus of the logarithm of the posterior distribution and the
covariance matrix of this posterior distribution is defined using asymptotic expansion as
the inverse of the Hessian matrix of the aforementioned function, which is defined by the
deviation of the computed quantities from corresponding experimental measurements.
The gradient and the Hessian matrix of the objective function are computed using first
and second-order adjoint approaches, respectively. The asymptotic approximation is also
used to propagate the computed uncertainties of the model parameters to compute the
uncertainty of the value of a quantity of interest. The presented approach is applied to
the estimation of the uncertainties in the parameters of the Spalart-Allmaras turbulence
model, based on experimental measurements that account for velocity and Reynolds stress
distributions.

1 INTRODUCTION

The Bayesian inference framework for quantifying and propagating uncertainties in
computational models of engineering systems has been adequately developed and widely
used [1, 2, 3]. The framework aims at the selection among alternative plausible model
structures to represent physical phenomenon and the unmodelled dynamics, estimation
of the uncertainties in the parameters of these model structures, as well as propagation
of uncertainties through the model to make robust predictions of output quantities of
interest (QoI), consistent with available experimental measurements.
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The Bayesian tools for identifying system and uncertainty models as well as performing
robust prediction analyses are Laplace methods of asymptotic approximation and stochas-
tic simulation algorithms [4, 5]. In analytical approximation, a Gaussian distribution is
used to approximate the posterior distribution of the uncertain parameters. The most
probable value of the parameters is obtained by minimizing the function defined as the
minus of the logarithm of the posterior distribution and the covariance matrix of this
posterior distribution is defined using asymptotic expansion as the inverse of the Hessian
matrix of the aforementioned function, which is expressed as the deviation of the com-
puted quantities from corrensponding experimental measurements. The Laplace asymp-
totic approximation is also used to propagate the computed uncertainties of the model
parameters to compute the uncertainty in output QoI. The analytical approximations of
the multi-dimensional probability integrals that arise in the propagation of uncertainties
involve evaluations of appropriate objective function derivatives and Hessians.

Theoretical and computational issues involved in solving the optimization problems
and computing the Hessian matrices are integrated in the Bayesian framework by de-
veloping direct differentiation and higher-order adjoint formulations [6, 7], including the
differentiation of the turbulence model [8]. Analytical techniques have computational ad-
vantages since they require a moderate number of system re-analyses in comparison to the
very large number of system re-analyses needed in the stochastic simulation algorithms.
This computational efficiency, however, comes with the extra burden of developing the
adjoint formulations and integrating them in system simulation software, a procedure that
can be quite cumbersome for a number of computational models employed in engineering
simulations.

A similar study for the estimation of turbulence model parameters using experimental
data has been proposed in [11], based on the Bayesian approach. However, in this study, a
stochastic optimization method was used, based on the Marcov Chain Monte Carlo theory,
to find the posterior probability density function of the Spalart-Allmaras turbulence model
parameters, so as the velocity and friction coefficient profiles confine to experimental data.
The algorithm was applied to the flow over a flat plate.

Theoretical and computational developments are demonstrated by applying the pro-
posed framework to the estimation of the parameters of the Spalart-Allmaras turbulence
model [9] based on velocity and Reynolds stress measurements at a backward facing step
flow [10].

2 BAYESIAN FRAMEWORK AND ASYMPTOTIC ANALYSIS

Assume that a CFD model (i.e. a RANS model described by the mean flow and
turbulence model equations) is used to predict a quantity of interest (QoI) (such as the
drag or lift of an airfoil/wing or the total pressure losses in a duct or a turbomachinery
cascade) in a flow test case. Let θp ∈ RNθp represent the vector of parameters of the CFD
model, such as the parameters involved in a turbulence model, whose values are to be
estimated based on experimental data. Let d ∈ RN be the vector of measured data of
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flow quantities available from experiments (such as velocities, Reynolds stresses, pressure
coefficients, friction coefficients, etc) and y(θp) ∈ RN be the vector of the values of the
same quantities computed by the model for specific values of θp.

2.1 Uncertainty Quantification and Estimation

The objective is to quantify the uncertainty in the parameters θp and model the miss-
ing (incomplete) information provided by the selected flow model given the experimental
data, as well as to propagate these uncertainties through the flow model to predict the
uncertainties in output QoI. Probability density functions (PDF) are used to quantify
uncertainties and the calculus of probability is employed for handling and propagating
uncertainties through the model in a consistent manner. To model the incomplete infor-
mation due to the selection of a particular flow model, a probabilistic model is built to
characterize the deviation between the experimental and the model predicted values. For
this, the measured data and the corresponding model predictions satisfy the prediction
error equation

d = y(θp) + e (1)

where e is the prediction error due to the measurement, computational and modeling
uncertainties. Assuming that the prediction error is characterized by a zero-mean and a
covariance Σ, the principle of maximum entropy is invoked to model the prediction error
by a Gaussian vector. It is assumed that the structure of the covariance matrix depends
on a parameter set θe, (Σ ≡ Σ(θe) ∈ RN×N). The parameters θe = (σ, λ) are estimated
jointly with θp, based on the experimental measurements.

Following a Bayesian formulation [3], the posterior PDF of the combined parameter
set θ = (θp, θe) given the measured data d, is given by

p(θ|d) =
p(d|θ)π(θ)

p(d)
(2)

where p(d|θ) is the likelihood of observing the data d from the model for given values of the
parameters θ, π(θ) is the prior probability of the parameters θ, and p(d) is the evidence

of the model class given by

p(d) =

∫

p(d|θ)π(θ)dθ (3)

so that the posterior PDF integrates to one. Using the Gaussian model for the prediction
error e, the likelihood function is given by

p(d|θ) =
1

(2π)
N
2 detΣ

1

2

exp

[

−
1

2
J(θ; d)

]

(4)
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where

J(θ; d) = [d − y(θp)]T Σ(θe)−1[d − y(θp)] (5)

expresses the deviation between the measured and model predicted quantities.
Using a well-established analytical approximation, valid for large number of experi-

mental data, the posterior distribution of the model parameters can be approximated by
a multi-variable Gaussian distribution

p(θ|d) ∼ pa(θ|d) =
1

(2π)
Nθ
2 detH−

1

2

exp

[

−
1

2

(

θ − θ̂
)T

H(θ̂)
(

θ − θ̂
)

]

(6)

centered at the most probable value θ̂ of the posterior distribution function or equivalently
the minimum of the function

L(θ) = −log(p(d|θ)π(θ)) (7)

given by

θ̂ = arg min
θ

[L(θ)] (8)

and with covariance C(θ̂) equal to the inverse of the Hessian H(θ̂) of the function L(θ)
estimated at the most probable value θ̂. The uncertainty in θ can thus be fully described
asymptotically by solving an optimization problem for finding the most probable value θ̂
that minimizes the function L(θ), and also evaluating the Hessian of the function L(θ) at
a single point θ̂. Herein it is assumed that only one global optimum exists with probability
volume that dominates the ones corresponding to multiple local optima. The analysis can
be extended to account for more than one global/local optima with comparable probability
volumes contributing to the posterior PDF [3].

An asymptotic estimate of the evidence of the model class based on Laplace approxi-
mation of the integral (3) is given by [1, 2, 12]).

p(d) =
(2π)

Nθ
2

[detH(θ̂)]1/2
exp[−L(θ̂)] (9)

This estimate can be used for comparing competing models.

2.2 Uncertainty Propagation

Let g(θ, η) be an output QoI that is evaluated by

g(θ, η) = gm(θ) + η (10)

4



Costas Papadimitriou, Dimitrios I. Papadimitriou

where gm(θ) is the prediction of the QoI from the flow model and η is the prediction error
accounting for the model error. As in the case of measured QoI, the model error can be
assumed to be Gaussian with zero mean and variance σ2

η. The uncertainty in the output
QoI can be obtained by propagating the uncertainty in the parameter set θ through the
flow model and taking into account the model error uncertainty.

The uncertainty is next described by the mean and the standard deviation of the
quantity g(θ, η). Using eq. (10), the mean is readily computed as

E[g(θ, η)] = E[gm(θ)] (11)

The standard deviation is estimated through the second moment which, taking into ac-
count that gm(θ) and η are independent variables, one readily derives from eq. (10) that

E[g2(θ, η)] = E[g2
m(θ)] + σ2

η (12)

The variance of the QoI is finally obtained from

V ar[g(θ, η)] = V ar[gm(θ)] + σ2
η (13)

where

V ar[gm(θ)] = E[g2
m(θ)] − {E[gm(θ)]}2 (14)

The posterior mean value of gm(θ) is given as

E[gm(θ)] =

∫

gm(θ)p(θ|d)dθ (15)

and the posterior second moment is

E[g2
m(θ)] =

∫

g2
m(θ)p(θ|d)dθ (16)

Substituting the expression of the posterior PDF in eq. (15) yields

E[gm(θ)] =

∫

gm(θ)p(d|θ)π(θ)dθ
∫

p(d|θ)π(θ)dθ
(17)

The Laplace asympotic estimate for the denominator is given in eq. (9). Applying a sim-
ilar asymptotic estimate for the numerator, one readily obtains the following asymptotic
estimate for the mean value of gm(θ)

E[gm(θ)] = exp[L(θ̂) − Lg(θ̂g)]
[detH(θ̂)]1/2

[detHg(θ̂g)]
1/2

(18)

5



Costas Papadimitriou, Dimitrios I. Papadimitriou

where

θ̂g = arg min
θ

[Lg(θ)] (19)

the function Lg(θ) is given by

Lg(θ) = −log(gm(θ)p(d|θ)π(θ)) = −log(gm(θ)) + L(θ) (20)

and Hg(θ̂g) is the Hessian matrix of the function Lg(θ) evaluated at θ̂g.
Following the same procedure for the integral in eq. (16) that gives the second moment,

it can be readily shown that

E[g2
m(θ)] = exp[L(θ̂) − Lg2(θ̂g2)]

[detH(θ̂)]1/2

[detHg2(θ̂g2)]1/2
(21)

where

θ̂g2 = arg min
θ

[Lg2(θ)] (22)

with Lg2(θ) given by

Lg2(θ) = −log(g2
m(θ)p(d|θ)π(θ)) = −log(g2

m(θ)) + L(θ) (23)

and Hg2(θ̂g2) is the Hessian of Lg2(θ) evaluated at θ̂g2 .
The mean and the standard deviation derived based on the asymptotic approximations

18 and 21 give robust prediction of the output QoI that take into account the uncertainty
in the turbulence model parameters and prediction error model parameters. The com-
putation of the mean value and variance of any output QoI g(θ, η) requires the solution
of two additional optimization problems (19) and (22) and the computation of a Hessian
matrix at each optimal solution. To considerably accelerate convergence to the optimal
solutions of the aforementioned optimization problems, the most probable solution θ̂ in
(8) can be used as starting point in both problems. It is evident that the first and second-
order adjoint methods for turbulence models in CFD are useful techniques for considerably
reducing the computational effort associated with the three optimization problems (8),
(19) and (22), as well as computing the Hessian of the three objective functions involved.

3 COMPUTATION OF FIRST AND SECOND-ORDER SENSITIVITIES

The objective function to be minimized is given in eq. (7) which can be expressed in
tensor form as

L =
1

2
(yk − dk)Σ

−1
kl (yl − dl) +

1

2
log(detΣ) +

N

2
log(2π) + Lπ (24)
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where the summation is implied for indices k and l with 1 < k, l < N , the notation
Σ−1

kl ≡ [Σ−1]kl is used, and yk (and dk) stand for the values of computed (and experimental)
axial velocities (u1) or Reynolds shear stresses µt(

∂u1

∂x2

+ ∂u2

∂x1

). The computed quantities
yk are interpolated at the locations where the experimental values are provided. The last
term Lπ is defined as

Lπ ≡ Lπ(θ) = −log(π(θ)) (25)

The differentiation of eq. (24) with respect to θi yields

dL

dθi

= (yk − dk)Σ
−1
kl

dyl

dθi

+
1

2
(yk − dk)

dΣ−1
kl

dθi

(yl − dl) +
1

2

dlog(detΣ)

dθi

+
∂Lπ

∂θi

(26)

without summation for the index i. The sensitivities of L with respect to θp
i are given by

dL

dθp
i

= (yk − dk)Σ
−1
kl

∂yl

∂Um

dUm

dθp
i

+
∂Lπ

∂θp
i

(27)

where Um = 0 stand for the discretized mean flow and turbulence model variables (1 <
m < Ng, where Ng is the number of grid nodes multiplied by 5 (the number of mean
flow and turbulence model equations). dL

dθp
i

are computed directly by solving the adjoint

equations

(yk − dk)Σ
−1
kl

∂yl

∂Um

+ Ψn
∂Rn

∂Um

= 0 (28)

with a cost almost equal to the cost for solving the flow equations, using the expression

dL̃

dθp
i

= Ψn
∂Rn

∂θp
i

+
∂Lπ

∂θp
i

On the other hand, the sensitivities of L with respect to θe
i are computed analytically

by the expression

dL

dθe
i

=
1

2
(yk − dk)

dΣ−1
kl

dθe
i

(yl − dl) +
1

2

dlog(detΣ)

dθe
i

+
∂Lπ

∂θe
i

(29)

Finally, the sensitivities of the objective function Lg(θ) and Lg2(θ) with respect to θp
i can

be computed analytically following a similar adjoint formulation that involves the output
QoI Lg(θ) and Lg2(θ) appearing in (19) and (22), respectively.

The second-order sensitivities of L with respect to θp
i are computed using the combi-

nation of direct differentiation with the adjoint approach, from the expression

d2L̄

dθp
i dθp

j

=

(

Ψq
∂2Rq

∂Um∂Un

+ (yk − dk)Σ
−1
kl

∂2yl

∂Um∂Un

+ Σ−1
kl

∂yk

∂Un

∂yl

∂Um

)

dUm

dθp
i

dUn

dθp
j

+ Ψq

(

∂2Rq

∂θp
i ∂Um

dUm

dθp
j

+
∂2Rq

∂Um∂θp
j

dUm

dθp
i

)

+ Ψq
∂2Rq

∂θp
i ∂θp

j

+
∂2Lπ

∂θp
i ∂θp

j

(30)
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where Ψq is the solution of eq. (28) and dUm

dθp
i

using the direct differentiation of the flow

equations. The second-order derivatives of L with respect to θe are computed analytically
by differentiating eq. (29), yielding

d2L

dθe
i dθe

j

=
1

2
(yk − dk)

d2Σ−1
kl

dθe
i dθe

j

(yl − dl) +
1

2

d2log(detΣ)

dθe
i dθe

j

+
∂2Lπ

∂θe
i ∂θe

j

(31)

and the mixed derivatives of L with respect to θp
i and θe

j are derived by differentiating eq.
(27) with respect to θe

d2L

dθp
i dθe

j

= (yk − dk)
dΣ−1

kl

dθe
j

∂yl

∂Um

dUm

dθp
i

(32)

4 APPLICATIONS

The proposed algorithm is applied to the quantification of the uncertainties of the eight
parameters of the Spalart-Allmaras turbulence model and the parameters of the prediction
error model in the flow through a 2D backward facing step configuration [10]. The flow
domain is shown in Fig. 1, used in http : //turbmodels.larc.nasa.gov/backstep val.html.
The flow through the 2D backward facing step is a well known test case configuration for
which several experiments have been conducted. The turbulent boundary layer encounters
a sudden back step, causing flow separation. The flow then reattaches and recovers
downstream of the step. The Reynolds number based on step height is equal to 36000
and the inlet Mach number is equal to 0.128. The step height is equal to 1m, while the
distance between the top and bottom walls is equal to 9m (after the step).

Figure 1: Schematic view of the backward facing step case.

The experimental data used for the quantification of uncertainties are the axial velocity
and Reynolds shear stress profiles at five longitudinal positions. The experimental data
and the measured positions within the flow domain can be found in [10] and in the
aforementioned site of NASA. The first position is 4m before the step and the other
four ones are 1m, 4m, 6m and 10m after the step. A computational grid with 4992
quadrilateral elements, obtained from the same site, is used to carry out the simulations.
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Figure 2: Comparison of the optimal velocity distributions at location 4m after the step based on the
optimal values of the model parameters for the correlated and uncorrelated case with the experimental
distributions based on measurements. The right figure is a close-up view at the separation region where
y < 3.
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Figure 3: Comparison of the optimal Reynolds stress distributions at location 4m after the step based on
the optimal values of the model parameters for the correlated and uncorrelated case with the experimental
distributions based on measurements. The right figure is a close-up view at the separation region where
y < 3.

κ cv1
cv2

cb1 cb2 cw2

nominal value 0.410 7.100 5.000 0.1355 0.622 0.300

optimal value (correlated) 0.471 6.817 4.950 0.1039 0.639 0.314

optimal value (uncorrelated) 0.456 7.591 4.749 0.1102 0.637 0.335

COV (prior) 0.200 0.200 0.200 0.2000 0.200 0.200

COV (posterior, correlated) 0.109 0.126 0.195 0.0712 0.193 0.172

COV (posterior, uncorrelated) 0.087 0.097 0.200 0.0535 0.194 0.175

Table 1: Initial and optimal parameter values and coefficients of variation (COV) using the adjoint
approach for the correlated and the uncorrelated case (first six parameters).

Two models are considered for the correlation of the computational errors. The first
one is based on a spatial correlation length model where the computational errors are
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cw3
σSA σV EL λV EL σRS λRS

nominal value 2.000 0.667 0.035 0.800 1.000 0.200

optimal value (correlated) 1.976 0.770 0.036 0.819 1.156 0.248

optimal value (uncorrelated) 2.074 0.915 0.039 - 1.436 -

COV (prior) 0.200 0.200 - - - -

COV (posterior, correlated) 0.200 0.148 0.145 0.386 0.073 0.189

COV (posterior, uncorrelated) 0.178 0.120 0.062 - 0.064 -

Table 2: Initial and optimal parameter values and coefficients of variation (COV) using the adjoint
approach for the correlated and the uncorrelated case (rest six parameters).

assumed correlated according to their spatial distance and the second one disregards any
spatial correlation. Results demonstrate that the measurements provide information for
estimating three to five among the eight parameters of the turbulence model, while the rest
of the parameters are insensitive to the information contained in the data. Model valida-
tion using the experimental measurements suggest that the Spalart-Allmaras model is not
adequate enough to accurately predict velocities and Reynolds stresses in certain region
in the flow domain where flow separation phenomena are dominant. This is manifested
by the high prediction error uncertainty in these regions in relation to the prediction
uncertainty arising from the turbulence model parameter uncertainty. Among the two
prediction error model classes considered, the spatially correlated one is clearly promoted
as the best model by the Bayesian model selection methodology.

In Tables 1 and 2, the initial and optimal values of the parameters using the proposed
method are shown for the correlated and uncorrelated prediction error model, respectively.
The coefficients of variation (COV) of the marginal distribution of each model parameter,
defined as the ratio of the standard deviation over the mean (optimal) value of each model
parameter, are also reported in these tables. For the Gaussian posterior distribution, the
standard deviation of the i-th parameter is the square root of the i diagonal element of
the covariance matrix. The experimental data are informative for a particular turbulence
model parameter if the COV of the marginal posterior PDF of this parameter is reduced
compared to the COV of the prior PDF. It can be seen from the results in Tables 1 and 2
that the most well-informed parameters are κ, cv1

and cb1 . The uncertainty in cw2
and σSA

has a smaller reduction in relation to the prior uncertainty. The rest of the parameters
cv2

, cb2 and cw3
retained the COV at approximately the level given by the prior Gaussian

distribution, indicating that the data do not provide valuable information for identifying
the values and uncertainty in these parameters.

The Bayesian asymptotic analysis is then used to propagate uncertainties to the total
pressure losses, computed as the difference in average total pressure pt between the inlet
and the outlet of the flow domain A−1

I

∫

SI
ptdS − A−1

O

∫

SO
ptdS where AI and AO are the

inlet and outlet areas, respectively. Accounting for the uncertainty in the turbulence
model parameters, the predicted mean value is equal to 2.752E − 3 and the standard
deviation is equal to 1.250E − 4, which corresponds to coefficient of variation of 4.5%,
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for the correlated model error case. In the case of the uncorrelated error model the mean
value of the total pressure losses is equal to 2.277E − 3 and the standard deviation is
equal to 1.592E − 3, which corresponds to coefficient of variation of 6.7%. It seems that
the uncertainty propagation results depend on the prediction error model used. Finally, it
should be noted that the uncertainties reported ignore uncertainties due to prediction error
model that arise from the model inadequacy. In contrast to the velocity and Reynolds
stresses, there is no information to compute such prediction error uncertainties since
the experimental values of the pressure losses are not available. As it was derived in the
theory (see equation (14)), the prediction error model uncertainties will be insignificant for
standard deviations ση much smaller than the standard deviations STD(gm(θ)) derived
from the uncertainties in the model parameters. However, for standard deviations ση

much larger than the ones derived from the uncertainties in the model parameters, the
prediction error uncertainties will dominate the overall uncertainty in the pressure losses.

5 CONCLUSIONS

A Bayesian framework was presented for uncertainty quantification and propagation
combining analytical asymptotic approximations with higher-order adjoint methods to
estimate the posterior PDF of the flow and prediction error model parameters, select
the best model among competitive prediction error models and propagate uncertainties
through CFD model simulations for making robust predictions of important output QoI.

The framework was applied for the estimation of the parameters of the Spalart-Allmaras
turbulence model based on velocity and Reynolds stress measurements at a backward
facing step flow. Results demonstrated that the measurements provide information for
estimating three to five among the eight parameters of the turbulence model, while the
rest of the parameters were insensitive to the information contained in the data.

ACKNOWLEDGMENTS

The research project is implemented within the framework of the Action “Supporting
Postdoctoral Researchers” of the Operational Program “Education and Lifelong Learn-
ing” (Actions Beneficiary: General Secretariat for Research and Technology), and is co-
financed by the European Social Fund (ESF) and the Greek State.

REFERENCES

[1] K.V. Yuen, Bayesian methods for structural dynamics and civil engineering, John
Wiley & Sons, 2010.

[2] C. Papadimitriou, L.S. Katafygiotis, A Bayesian methodology for structural integrity
and reliability assessment, International Journal of Advanced Manufacturing Sys-
tems, 4(1) (2001) 93-100.

11



Costas Papadimitriou, Dimitrios I. Papadimitriou

[3] J.L. Beck, L.S. Katafygiotis, Updating models and their uncertainties. I: Bayesian
statistical framework, Journal of Engineering Mechanics, ASCE., 124(4) (1998) 455-
461.

[4] P. Angelikopoulos, C. Papadimitriou, P. Koumoutsakos, Bayesian uncertainty quan-
tification and propagation in molecular dynamics simulations: a high performance
computing framework, The Journal of Chemical Physics, 137(14) (2012) 103-144.

[5] C. Papadimitriou, J.L. Beck, L.S. Katafygiotis, Updating robust reliability using
structural test data, Probabilistic Engineering Mechanics, 16(2) (2001) 103-113.

[6] L.L. Sherman, A.C. Taylor III, L.L. Green, P.A. Newman, J.W. Hou, V.M. Korivi,
First- and second-order aerodynamic sensitivity derivatives via automatic differen-
tiation with incremental iterative methods, Journal of Computational Physics, 129
(1996) 307-331.

[7] D.I. Papadimitriou, K.C. Giannakoglou, Aerodynamic shape optimization using first
and second order adjoint and direct approaches, Archives of Computational Methods
in Engineering, (State of the Art Reviews), 15(4) (2008) 447-488.

[8] A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou, C. Othmer, Continuous ad-
joint approach to the Spalart-Allmaras turbulence model for incompressible flows,
Computers and Fluids, 38 (2009) 1528-1538.

[9] P. Spalart, S. Allmaras, A one-equation turbulence model for aerodynamic flows,
AIAA paper, 92-0439, 1992.

[10] D.M. Driver, H.L. Seegmiller, Features of reattaching turbulent shear layer in diver-
gent channel flow, AIAA Journal, 23(2) (1985), 163-171.

[11] S.H. Cheung, T.A. Oliver, E.E. Prudencio, S. Prudhomme, R.D. Moser, Bayesian un-
certainty analysis with applications to turbulence modeling, Reliability Engineering
and System Safety, 96 (2011) 1137-1149.

[12] S.H. Cheung, J.L. Beck, Calculation of posterior probabilities for Bayesian model
class assessment and averaging from posterior samples based on dynamic system
data, Journal of Computer-aided Civil and Infrastructure Engineering, 25(5) (2010)
304-321.

[13] C. Papadimitriou, G. Lombaert, The effect of prediction error correlation on optimal
sensor placement in structural dynamics, Mechanical Systems and Signal Processing,
28 (2012) 105-127.

12


