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Abstract. A novel approach has been recently proposed by the author to study multilayered 

plate and shell structures with imperfect and cohesive interfaces and delaminations. Stress and 

displacement fields, which in these systems are characterized by large variations and 

discontinuities in the thickness direction, are fully described in the theory through a limited 

number of displacement unknown functions, independent of the number of layers and 

interfaces and equal to that of single layer theories for fully bonded structures. Applications 

which highlight the accuracy, range of applicability and limitations of the approach will be 

presented at the meeting.   
 

 

1 INTRODUCTION 

Delamination damage growth in multilayered plate and shell structures loaded dynamically 

is conveniently studied using fracture mechanics principles and a discrete-layer approach, 

which describes the system as an assemblage of layers joined by cohesive interfaces (e.g. [1-

3]). The interfaces define all actual and potential fracture surfaces in the system and cohesive 

traction laws are introduced, which relate the interfacial tractions to the relative displacements 

between the layers, in order to describe all different nonlinear mechanisms taking place at the 

interfaces, e.g. material rupture, cohesive/bridging mechanisms, elastic contact. This approach 

leads to accurate solutions of the problem, however it may become computationally very 

expensive since the number of unknowns of the problem depends on the assumed kinematic 

description of the layers and on the number of layers chosen to discretize the system. If the 

First Order Shear Deformation theory is used to for the kinematic description of the layers in 

a plate or a cylindrical shell, the number of displacement unknowns is then 5×n (with n the 

number of layers). 

A novel approach, based on a homogenization technique, has been recently proposed by 

the author to study the dynamic response of multilayered plates and shells with cohesive 

interfaces [4-6]. The model extends to systems with generally nonlinear cohesive interfaces a 

theory which was originally formulated for systems with linearly elastic interfaces [7-10]. As 

in a classical discrete-layer model, the system is decomposed into layers and cohesive 

interfaces, Fig. 1. A two length-scales displacement field is assumed, which is characterized 

by a global displacement (continuous and with continuous derivatives in the thickness) and 

local perturbations or enrichments (piece-wise linear with jumps at the interfaces). Through 
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the a-priori imposition of interfacial continuity conditions, a homogenized displacement field 

is derived, which depends on the global displacement variables only. Hamilton principle of 

elastokinetics is then used to obtain the equilibrium equations.  

The dynamic equilibrium equations depend on a limited number of unknowns, which is 

independent of the number of layers used to discretize the system. In a plate or a cylindrical 

shell, for instance, the number of displacement unknowns is reduced from 5×n, as in a 

classical discrete layer model, to 6. In [11] the theory has been compared with rigorous 

elasticity solutions and with the original models proposed in [7-10] for plates and shells with 

purely elastic interfaces. Omissions in the interfacial energy contributions in Hamilton 

equation in [7-10] were highlighted and revised formulations presented in the Appendices 

[11]. The accuracy and limitation of the approach have been further investigated in [12], 

where the model has been particularized to plates deforming in cylindrical bending and 

applied to investigate the effects of the number and position of the imperfect interfaces in 

unidirectionally reinforced plates and highly anisotropic multi-layered systems with linearly 

elastic cohesive interfaces.  

The assumptions and formulation of the model are briefly recalled here and some 

applications are presented which highlight the capabilities of the proposed approach. At the 

meeting, preliminary applications of the theory to some simple fracture mechanics problems 

will be presented.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) Composite plate element showing discretization into sub-layers, cohesive 

interfaces and delaminations. (b) Interfacial tractions and counterparts of stress resultants and 

couples acting on layer k. 

2 MODEL ASSUMPTIONS AND FORMULATION 

Consider a multilayered plate of thickness h , Fig. 1. A system of Cartesian coordinates 

1 2 3x x x   is introduced with the axis 3x  normal to the reference surface of the plate and 

measured from it. The plate has volume V  and upper and lower external surfaces, 


S  and 


S ; the lateral bounding surface, B , is generated by the normal to the reference surface 

along its boundary curve C . The plate consists of n  layers exhibiting different mechanical 

properties and joined by 1n  interfaces. The layer k, where the index 1,..,k n  is numbered 

from bottom to top, is defined by the coordinates 
1

3

kx 
and 3

kx  of its lower and upper 

interfaces, 
( )k 
S  and 

( )k 
S , and has thickness ( )k h  (the k superscript in brackets identifies 

affiliation with layer k). Each layer is linearly elastic, homogeneous and anisotropic with 
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monoclinic symmetry about its mid-surface; the principal material axes of the layer do not 

necessarily coincide with the geometrical axes of the structure 
1 2x x . The mass density is 

uniform and equal to m . The plate is subjected to time dependent distributed loads ( , )tp x  

acting on 


S , 


S  and B . 

In tensorial index notation the constitutive equations for the layer k are 
( ) ( ) ( )k k k

ij ijhk hkC   

and 
( ) ( ) ( )k k k

ij ijhk hkA  , where 
( ) ( )

3 3 3 3 / 4k kA C     , with   the Kronecker index. (the 

Einsteinian summation convention applies to repeated subscripts of tensor components, with 

Latin subscripts ranging from 1 to 3 and Greek subscripts from 1 to 2).  

The displacement vector ( , )tv x  at time t of an arbitrary point of the plate at the coordinate 

 1 2 3, ,
T

x x xx  is  1 2 3, ,
T

v v v w v , with 1v , 2v  and 3w v  the displacement components 

onto the reference surface of the plate. 

The n-1 interfaces are assumed to be imperfect and, following the assumptions of the 

spring-layer approach [7] for sliding interfaces and its extension to mixed-mode interfaces 

[10], as well as classical cohesive-crack approaches [1-3], interfacial traction laws are 

introduced which relate the interfacial normal and shear tractions, 33
ˆ ˆk k

N  , 13
ˆ k  and 23

ˆ k , 

acting along the surface of the layer k at the interface 
( )k 
S  with unit positive normal vector, 

to the interface relative displacements, defined by the vector 

  ( 1) ( )

1 2 3 3
ˆ ˆ ˆ ˆ, , ( ) ( )

T
k k k k k k k kv v w x x  v v v ,  Fig. 1.b. The  traction laws are typically assumed 

to be nonlinear, in order to describe different physical mechanisms, which may include 

cohesive/bridging mechanisms developed by trans-laminar reinforcements or other means, 

material rupture, elastic contact along delamination surfaces, … [1-3]. This formulation refers 

to linear non-proportional interface laws, given by: 

 

13 11 1 12 2 1
ˆ ˆ ˆ   k k k k k kK v K v t ,   23 21 1 22 2 2

ˆ ˆ ˆ    k k k k k kK v K v t ,    ˆ ˆk k k k

N N NK w t   ,     (1) 

 

or, in direct and inverse matrix forms, 

 

ˆ ˆ σ Κ v t
k k k k

 and  ˆ ˆ( ) v B σ t
k k k k

         (2) 

 

where k
Κ  and k

B  are the symmetrical interface stiffness and compliance matrices, 

 13 23 33
ˆ ˆ ˆ ˆ ˆ, ,

T
k k k k k

N    σ , and   1 2 3, ,
T

k k k k k

Nt t t t t  is a vector of constant interfacial 

tractions which are assumed to act for any ˆ k v 0 . The interfacial traction laws in Eqs. (1) 

and (2) assume no coupling between in-plane and out of plane interface tractions, namely 

13 23 0k kK K   and 33

k k

NK K , as it is normally assumed in the literature on cohesive cracks.  

A purely elastic interface is described by 
k t 0 , perfectly bonded interfaces are defined 

by 
k t 0  and 0k B , which yields ˆ k v 0 , and fully debonded interfaces by 

k t 0  and 

0k Κ , which yields ˆ k σ 0 . The classical spring-layer approaches for sliding interfaces [7-

9], are obtained by imposing 0k

NB  , which yields ˆ 0kw  . For 
k t 0 , the linear non 

proportional laws of Eqs. (1) and (2) could describe the bridging mechanisms developed by a 
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through-thickness reinforcement, e.g. stitching, applied to a laminated composite [13].  As 

proposed in [4-6], the linear non proportional laws in Eqs (1,2) allows the treatment of 

interfaces with generally nonlinear cohesive traction laws, which can be approximated as 

piece-wise linear functions of the relative displacements and where Eq. (2) then defines an 

arbitrary branch i of the functions. 

A two length-scales displacement field  1 2 3, ,
T

v v v w v  is assumed, which is analogous 

to that proposed by Librescu and Schmidt for multilayered shells in [10], and is given by the 

superposition of a global field and local perturbation terms (or enrichments): 
 

1 1

1 2 3 0 3 3 3

1 1

ˆ( , , , ) ( )
n n

k k k k k

k k

v x x x t v x x x H v H    
 

 

      
1 1

1 2 3 0 3 3 3 3 3

1 1

ˆ( , , , ) ( )  
n n

k k k k k

k k

w x x x t w x x x H w H
 

 

                    (3)       

 

The terms on the right hand side of Eqs. (3) denote different contributions in the 

displacement representation: 0 0 ( , )v v x t   , 0 0( , )w w x t  and ( , )x t     define 

standard first order shear deformation theory terms, which are continuous with continuous 

derivatives in the thickness direction, 
1

3C , and define the displacement components of a point 

on the reference surface and the rotations of the normal to the reference surface when the 

latter coincides with the mid-surface of the bottom layer; 3 3( , )x t   is the constant strain in 

the transverse direction, which is needed to capture, in the simplest way possible [10], the 

effect of transverse normal compressibility and to model opening and elastic contact along 

delaminations [4-6]; the third terms, with summations on the total number n-1 of interfaces 

and 3 3( ) k kH H x x  3 30, ;    kx x 3 31,    kx x  the Heaviside’s function,  supply the zig-

zag contributions [14-15], which are continuous in 3x  but with jumps in the first derivatives at 

the interfaces, 
0

3C , and are necessary to satisfy continuity on normal and shear tractions at the 

interfaces in plates with arbitrary stacking sequences; the fourth terms, with summations on 

the number of cohesive interfaces n-1, define a discontinuous field and supply the 

contribution of the relative displacements (jumps) at the cohesive interfaces.  

By imposing continuity of shear and normal tractions at the interfaces and the constitutive 

laws of the interfaces, the zigzag functions and the displacement jumps are defined as 

function of the global displacement variable. Details on the procedure can be found in [11]. 

The resulting homogenized displacement field in the kth layer is given by: 

 

   
1

0 3 0, 3,

1

k
k k k i i

S N

i

v v x w R R B t           




     

   
1 1

0 3 3 33 3 3 33

1 1

( )
k k

k i i i i i

N N

i i

w w x x x B t
 

 

   
        

   
                            (4)  

where: 

   
1

1;

3 3 3

1

( )
k

ik k i i

S S

i

R R x x x   





 
     

 
       (5) 
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         
1 1

1; ;1 1

3 3 3 3 33 33 3 3

1 2 1

( ) 1
k i l

i l i nk k l l i i i

N N

i l n

R R x x x x x x     
 



  

   
              

   
  

 

Equations (4) highlight that the displacement field is fully defined by the 6 displacement 

variables which define the global part of the displacement, and are underlined in the 

equations. The equations depend on the elastic constants of the material, the layup and the 

geometry, through the terms with no lines  
33

i
  and  1;i

 , and on the parameters of the 

cohesive traction laws, through the terms with the curved lines on top, i iB t  ,  i

 , 33

i  and

i

 . Expressions for these parameters can be found in [11]. In the case of linear interfacial 

laws, when 
k t 0 , the equations coincide with those obtained in [10] for a shallow shell; for 

perfectly bonded layers, all terms with the curved line on top vanish and the equations are 

those of classical first order zig-zag theory [14,15].  

Hamilton principle of elastokinetics is used to derive the dynamic equilibrium equations in 

weak form. Dynamic equilibrium equations for multi-layered plates with arbitrary lay-ups can 

be found in [11] and equations for cylindrically bent plates in [12]. 

3 APPLICATIONS 

When the layers are perfectly bonded, namely when 0k B  for all ks, the equations of 

the proposed model coincide with those of first order zigzag models formulated for fully 

bonded plates [14,15]. The accuracy of the approach to describe multilayered plates with 

complex layups under such assumption has been extensively investigated in the literature. 

Focus is placed here on the accuracy of the proposed theory for plates with imperfect 

interfaces and delaminations. To this aim, the results of the model will be compared with 

exact 2D elasticity solutions.  

The model has been applied to a multilayered anisotropic plate with n layers and n-1 

linearly elastic, slip-only interfaces ( ˆ ˆk k kσ Κ v  with 0k

NB  , Eq. (3)), Fig. 2. The plate is in 

cylindrical bending, simply supported at the edges and subjected to a static load 

 0 2sinq q x L . The elastic constants of each transversely isotropic layer are ,  L TE E , LTG

, TTG  and ,  LT TT  . The exact 2D elasticity solution of this problem was obtained by Pagano 

[16] for fully bonded multilayered plates ( 0k B ); a strategy to extent the model to plates 

with linearly elastic interfaces was formulated in [17]. Both the exact 2D model and the 

proposed homogenized model [11] are solved in closed form.  

 

 

 

 

 

 

 

 

Fig. 2. Multilayered anisotropic plate with imperfect interfaces deforming in cylindrical 

bending. 
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Two different layups are examined:  

(a) A unidirectional plate with fibers in the x2 direction and two equally spaced cohesive 

interfaces (0deg/0deg/0deg); 

(b) A multilayered plate composed of three orthotropic layers (0deg/90deg/0deg) with n = 

3 and two equally spaced interfaces. 

Within the proposed homogenized approach, and if the interfaces have the same constitutive 

laws, the behavior of the unidirectional plate (a)  is controlled by 2 dimensionless groups, the 

dimensionless shear stiffness, 
2( / )LT LG E L h , and the dimensionless interfacial stiffness, 

2

2 ( / )LK h E L h  (or interfacial compliance 2

2( )( / )Lh B E L h ), where  1L L LT TLE E     is 

the stiffness coefficient modified to account for negligible normal stresses in the 3x  direction.  

Figure 3 shows longitudinal displacements and transverse shear stresses in the thickness of 

the plate at 2 0x   for three values of the dimensionless interfacial stiffness: (a,b) a fully 

bonded plate, (e,f) a fully debonded plate and (c-d) an intermediate case. The diagrams 

compare the exact solutions with the solutions of the proposed I order model. The shear 

stresses in the approximate model have been obtained a posteriori from equilibrium. The 

diagrams refer to 
2( / )LT LG E L h = 0.5 and could represent a highly anisotropic plate with  

L/h = 5, and / 25T LE E , / 50LT LG E , and 0.25LT TT   , e.g. a thick unidirectionally 

reinforced plate with a high degree of orthotropy. The results of the proposed model virtually 

coincide with the exact theory. Relative errors on the value of the interfacial tractions are 

always below 10% but for the smallest interfacial stiffnesses,  
2

2 0.2LK h E L h  , where 

the error increases to a maximum of  20%. Relative errors on maximum values of shear and 

normal stresses are very low for all interfacial stiffness values.  

Figure 4 shows the transverse displacements normalized to the exact displacements of a 

fully debonded plate for 
2( / )LT LG E L h = 4 and 0.5 and the layup (a). The displacements of 

the proposed model have been derived assuming a shear factor coefficient 2K =5/6 (see [11] 

for a discussion on this point). The proposed model well reproduces the exact results but for 

the smaller values of interfacial stiffness. The discrepancy derives from the imposed 

continuity on the transverse shear tractions at the interfaces: when the interfacial stiffness 

goes to zero, the model predicts the same behavior in the transverse shear stresses. While 

vertical equilibrium is satisfied at all sections, and the stress field is properly described by 

imposing equilibrium conditions a posteriori (Fig. 3) [11], the transverse displacements are 

underestimated since the shear strains progressively reduce. This effect, which disappear 

when the dimensionless group 
2( / )LT LG E L h  is large, gives higher discrepancies for lower 

values of 
2( / )LT LG E L h . When the interfacial stiffness tends to zero, the solution of the 

proposed model with 2K =5/6 tends to the solution of two superposed Kirchhoff–Love plates 

free to slide over each other’s, while the exact 2D solution is well described by the 

approximate solution of two superposed Mindlin-Reissner plates. The exact 2D solution 

however is fully recovered by the results of the proposed model if the shear strains in the plate 

are incremented by  “fictitious” strains associated to the internal resultant which is needed to 

satisfy equilibrium [11].  This observation substantiates the idea of modifying the shear 

correction factor 2K  to account for the presence of imperfect interfaces (work is in progress 

on this problem).  
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Fig. 3. Dimensionless longitudinal displacements and transverse shear stresses through 

thickness in the unidirectional  three-layer plate (0/0/0) with 
2( / )LT LG E L h = 0.5  at 2 0x  . 

Transverse shear stresses determined from equilibrium.  (a,b) Fully bonded, (e,f) fully 

debonded, (c,d) intermediate bonding with  
2

2 0.25LK h E L h  .  
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Fig. 4. Transverse displacements normalized to those of a fully debonded plate in the 

unidirectional three-layer system (0/0/0) with (a) 2( / )LT LG E L h = 4  and (b) 2( / )LT LG E L h = 

0.5  on varying the interfacial stiffness (decreasing interfacial stiffness from left to right).  
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(c)                                                                         (d) 

Fig. 5. Transverse shear stresses (a), longitudinal displacements (b), normal stresses and 

transverse normal stresses through thickness in the three-layer plate (0/90/0), with L/h = 4, at 

2 0x   (a,b) and 2 / 2x L   (c,d). Transverse shear/normal stresses determined from 

equilibrium. Lower interface, intermediate bonding with  2 4TB E h  ; upper interface, 

4

2 4 10 0TB E h     (fully bonded,). Elastic constants: / 25T LE E , / 50LT LG E , 

/125TT LG E  and 0.25LT TT    [16] ( 2B = interfacial sliding compliance). 
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The behavior of the three-layer plate (b) is controlled by 4 dimensionless groups, the 

dimensionless shear stiffnesses, 
2( / )LT LG E L h  and 

2( / )TT LG E L h , transverse stiffness, 

2( / )T LE E L h , and interfacial stiffness, 2

2 ( / )LK h E L h . Figures 5 shows longitudinal 

displacements, transverse shear and normal stresses and longitudinal stresses in the thickness 

of the plate for the material and stacking sequence studied in the original model by Pagano 

[16] (perfect interfaces) and in [7] (imperfect interfaces) / 25T LE E , / 50LT LG E , 

/125TT LG E  and 0.25LT TT   . The solutions of the model proposed in this paper are 

compared with the exact solutions for a plate with L/h = 4, a fully bonded upper interface and 

an imperfect lower interface with 2 4TB E h  . The proposed model well describes the highly 

discontinuous displacement field and is able to capture the large variations observed in all 

stress components. 

 

4 CONCLUSIONS  

A novel mechanical model has been formulated to study plates with imperfect and 

cohesive interfaces and delaminations [11,12]. Dynamic equilibrium equations have been 

derived for linear non-proportional cohesive traction laws. The equations depend on only six 

unknown displacement variables, independently of the number of layers and cohesive 

interfaces which have been used to discretize the system. The model can be applied, following 

classical discrete-layer approaches, to study plates with generally nonlinear cohesive 

interfaces. This can be done by approximating the nonlinear cohesive traction laws as 

piecewise linear functions of the relative displacements at the interfaces. The dynamic 

equilibrium equations derived here will then describe the generic ith branch of the functions.  

At the meeting, preliminary applications of the theory to some simple fracture mechnics 

problems will be presented. 
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