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Abstract. The objective of this paper is to present formulations developed by the au-
thors for soil-building interaction analysis. The soil is modeled with the boundary element
method as a layered solid infinite for radial directions. Cylindrical piles are modeled with
the finite element method using one dimensional elements. The raft is also modeled with
the FEM, but with two dimensional elements. The analysis is static and all materials are
considered homogeneous, isotropic, elastic and with linear behavior. Kelvin fundamental
solutions are used in the BEM and an alternative multi-region technique is employed. Infi-
nite boundary elements are employed for the far field simulation, allowing computational
cost reduction without compromising the result accuracy. In the one dimensional ele-
ments used for the piles, displacements and tractions along the shaft are approximated by
polynomial functions. The triangular three-node FE employed for the raft is obtained by
superposing plate and membrane effects, totalizing six degrees of freedom per node. For
the FEM-BEM coupling, the BEM tractions are considered as nodal reactions between the
contact surfaces. The coupling is established using equilibrium and compatibility equa-
tions, obtaining a single system of equations that represents the complete pile-raft-soil
problem.

1 INTRODUCTION

Piled rafts involve complex soil-structure interaction effects that require previous stud-
ies to be correctly considered in the project. The basis of these studies has to be chosen
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among many options available and each one of them implies on advantages and disadvan-
tages, as described below.

When possible, a good choice is to employ analytical methods. When correctly pro-
grammed they give trustful results in little processing time. In reference [1], for example,
a solution is presented for an axially loaded pile with a rectangular cross section and
immersed in a layered isotropic domain. The main disadvantage of these solutions is that
they suit only specific situations, so many researches keep developing new ones to include
new problems. Other works that may be cited are [2, 3].

If analytical solutions cannot be used, one alternative would be a numerical approach.
The developments [4] of the numerical methods in the latter years and its versatility made
them attractive to many researchers. The finite element method (FEM) is still popular
[5, 6, 7, 8], however has some disadvantages when compared to other options such as the
boundary element method (BEM). The FEM require the discretization of the domain,
which has to be simulated as infinite in most soil-structure interaction problems. This
implies on a high number of elements, leading to a large and sometimes impracticable
processing time.

It becomes more viable solving these problems with the BEM, once only the boundary
of the domains involved is discretized. This allows reducing the problem dimension,
implying on less processing time. This advantage is explored in several works [9, 10, 11,
12, 13, 14, 15, 16] and new developments are making the BEM even more attractive to
future applications. One is simulating non-homogeneous domains using an alternative
multi-domain BEM technique [17], another is using mapping functions to make boundary
elements infinite [18].

The objective of this paper is to present a formulation for building-soil interaction anal-
ysis that uses recent developments accomplished by the authors in references [17, 18]. The
proposed formulation is applied into two examples. In the first, a squared raft resting on
an infinite layered domain is considered. Results are compared with other formulations
available in the literature including an analytical approach and good agreement is ob-
served. The objective of the second example is to show all functionalities of the proposed
formulation, considering a complete building interacting with a layered soil. No compari-
son with other authors is presented, nevertheless the results obtained may be considered
coherent. Finally, it is concluded that the presented formulation may be considered a
practical and attractive alternative in the field of soil-structure interaction simulation.

2 BOUNDARY ELEMENT FORMULATION

The equilibrium of a solid body can be represented by a boundary integral equation
called the Somigliana Identity, which for homogeneous, isotropic and linear-elastic do-
mains is

cij (y)uj (y) +

∫

Γ

p∗ij (x, y)uj (x) dΓ (x) =

∫

Γ

u∗
ij (x, y) pj (x) dΓ (x) (1)
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Figure 1: Triangular boundary element.

Equation (1) is written for a source point y at the boundary, where the displacement
is uj (y). The constant cij depends on the Poisson ratio and the boundary geometry at
y, as pointed out in reference [20]. The field point x goes through the whole boundary
Γ, where displacements are uj (x) and tractions are pj (x). The integral kernels u∗

ij (x, y)
and p∗ij (x, y) are Kelvin three-dimensional fundamental solutions for displacements and

tractions, respectively. Kernel u∗
ij (x, y) has order

1/r and kernel p∗ij (x, y) order
1/r2, where

r = |x− y|, so the integrals have singularity problems when x approaches y. Therefore
the stronger singular integral, over the traction kernel, has to be defined in terms of a
Cauchy Principal Value (CPV).

To solve Equation (1) numerically, the boundary is divided into regions within which
displacements and tractions are approximated by known shape functions. Here these
regions are of two types, finite boundary elements (BEs) and infinite boundary elements
(IBEs). The BEs employed are triangular, as shown in Figure 1 with the local system of
coordinates, ξ1ξ2, and the local node numbering. The following approximations are used
for this BE:

uj =

3
∑

k=1

Nkuk
j , pj =

3
∑

k=1

Nkpkj (2)

Equation (2) relates the boundary values uj and pj to the nodal values of the BE. The
BEs have 3 nodes and for each node there are three components of displacement uk

j and
traction pkj . The shape functions Nk used for these approximations are

N1 = ξ1, N2 = ξ2, N3 = 1− ξ1 − ξ2 (3)

The same shape functions are used to approximate the boundary geometry:

xj =

3
∑

k=1

Nkxk
j (4)
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where xk
j are the node coordinates. The same functions are also used to interpolate

displacements and tractions for the IBEs:

uj =

Np
∑

k=1

Nkuk
j , pj =

Np
∑

k=1

Nkpkj (5)

Each IBE has Np nodes and not the 3 that the BEs have. The IBE geometry, on the
other hand, is approximated by special mapping functions, as discussed in more detail in
Section 3.

By substituting Equations (2) and (5) in (1), Equation (6) is obtained:

cij (y)uj (y) +
NBE
∑

e=1

{

3
∑

k=1

[

∆pekij u
k
j

]

}

+
NIBE
∑

e=1

{

Np
∑

k=1

[

∆∞pekij u
k
j

]

}

=

NBE
∑

e=1

{

3
∑

k=1

[

∆uek
ij p

k
j

]

}

+
NIBE
∑

e=1

{

Np
∑

k=1

[

∆∞uek
ij p

k
j

]

} (6)

NBE is the number of BEs and NIBE is the number of IBEs. For BEs:

∆pekij =

∫

γe

|J |Nkp∗ij (x, y) dγe, ∆uek
ij =

∫

γe

|J |Nku∗
ij (x, y) dγe (7)

In Equation (7), γe represents the domain of element e in the local coordinate system
and the global system of coordinates is transformed to the local one by the Jacobian
|J | = 2A, where A is the element area in the global system. On the other hand, for IBEs:

∆∞pekij =

∫

γe

|∞J |Nkp∗ij (x, y) dγe, ∆∞uek
ij =

∫

γe

|∞J |Nku∗
ij (x, y) dγe (8)

Equation (8) is analogous to (7), and the calculation of Jacobian |∞J | is discussed in
Section 3. Integrals of Equations (7) and (8) are calculated by standard BEM techniques.
Non-singular integrals are evaluated numerically by using integration points. The singular
ones, on the other hand, are evaluated by the technique presented in reference [19]. Finally,
the free term cij may be obtained by rigid body motions. Writing Equation (6) for all
boundary nodes leads to the following system:

∆p · u = ∆u · p (9)

The ∆pekij and ∆∞pekij element contributions, including the free term cij , are assem-
bled into matrix ∆p, while ∆uek

ij and ∆∞uek
ij contributions are assembled into matrix ∆u.

Vectors u and p contain all boundary displacements and tractions, respectively. Reorga-
nizing this system so as to separate the known boundary values from the unknown yields
a system of equations whose solution is all the unknown boundary values.
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Figure 2: Types of mapping.
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3 INFINITE BOUNDARY ELEMENTS

Three types of mapping are considered, as illustrated in Figure 2.
In the first type, represented in Figure 2a, only direction ξ1 is mapped to infinity and

node 1 is placed at infinity. The IBE is represented in the local coordinate system on the
left and in the global coordinate system on the right. The global coordinates xi are related
to the local ones by special mapping functions, Mk, and the nodal global coordinates, xk

i .
Node 4 is created only to replace node 1 in the mapping and does not contribute to the
integrals.

Figure 2b is analogous to Figure 2a, but in this case only direction ξ2 is mapped to
infinity and node 2 is placed at infinity. Therefore, node 5 is created to facilitate the
mapping. Finally, in Figure 2c both local directions are mapped to infinity and nodes 1
and 2 are placed at infinity. As a result, the auxiliary nodes 4 and 5 must be created to
replace them in the mapping.

In reference [18], auxiliary coordinates ξ̄1 and ξ̄2 are used to obtain the mapping func-
tions for each case. When only direction ξ1 is mapped to infinity, the result is:

M4
1∞ = ξ̄1 (ξ1) =

ξ1

1− ξ1
(10)

M2
1∞ = ξ2 (11)

M3
1∞ = 1− ξ̄1 (ξ1)− ξ2 = 1−

ξ1

1− ξ1
− ξ2 (12)

The symbol “1∞” is used to indicate that these expressions are valid if only direction
ξ1 is mapped to infinity. These functions are then employed to relate the local system of
coordinates to the global one. In other words:

xi = M4
1∞x4

i +M2
1∞x2

i +M3
1∞x3

i (13)

After obtaining Equation (13), the Jacobian used when only direction ξ1 is mapped to
infinity may be calculated as follows:

|∞J1| =
∂x1

∂ξ1

∂x2

∂ξ2
−

∂x2

∂ξ1

∂x1

∂ξ2
=

2A1

(1− ξ1)
2 (14)

where A1 is the area of the triangle drawn between nodes 2, 3 and 4 in the global system
of coordinates.

For mapping only in direction ξ2 to infinity, the functions obtained are:

M1
2∞ = ξ1 (15)

M5
2∞ = ξ̄2 (ξ2) =

ξ2

1− ξ2
(16)
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M3
2∞ = 1− ξ1 − ξ̄2 (ξ2) = 1− ξ1 −

ξ2

1− ξ2
(17)

The symbol “2∞” is used to indicate that only direction ξ2 is mapped to infinity.
Therefore, the global system is related to the local one as follows:

xi = M1
2∞x1

i +M5
2∞x5

i +M3
2∞x3

i (18)

and the Jacobian is

|∞J2| =
2A2

(1− ξ2)
2 (19)

where A2 refers to the area of the triangle drawn between nodes 1, 3 and 5 in the global
system of coordinates.

Finally, for mapping in both directions ξ1 and ξ2 to infinity, the mapping functions are

M4
∞ =

ξ1

1− ξ1
(20)

M5
∞ =

ξ2

1− ξ2
(21)

M3
∞ = 1−

ξ1

1− ξ1
−

ξ2

1− ξ2
(22)

The symbol “∞” is used to indicate that both directions are mapped to infinity. The
local system of coordinates is related to the global one as follows:

xi = M4
∞x4

i +M5
∞x5

i +M3
∞x3

i (23)

and the Jacobian is now

|∞J3| =
2A3

(1− ξ1)
2 (1− ξ2)

2 (24)

where A3 is the area of the triangle drawn between nodes 3, 4 and 5 in the global system.

4 LOAD LINES IN THE SOIL

In this work, the reactive tractions from the piles are applied in the soil as load lines.
Figure 3 presents the model adopted, with four nodes equally spaced along the pile.

The load lines influence may be computed in Equation (1) with an additional term as
follows

cij (y)uj (y) +
∫

Γ

p∗ij (x, y)uj (x) dΓ (x) =

∫

Γ

u∗
ij (x, y) pj (x) dΓ (x) +

nl
∑

e=1

[

∫

Γe

u∗
ij (x, y) s

e
j (x) dΓ

e (x)

] (25)
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Figure 3: Model for load lines.

where nl is the number of load lines, Γe are their external surface and sej are the tractions
presented in Figures 3c and 3d. The tractions are approximated from the nodal values
sekj using nf polynomial shape functions φ:

sej =

nf
∑

k=1

φksekj (26)

Shape functions are written with a dimensionless coordinate ξ = 2x3/L − 1, where L

is the load line length and x3 is the vertical global coordinate. One may observe that
−1 ≤ ξ ≤ 1, so the use of Gauss points is facilitated. For the horizontal tractions,
illustrated in Figure 3c, nf = 4 and the shape functions are:

φ1 = 1
16
(−9ξ3 + 9ξ2 + ξ − 1) , φ2 = 1

16
(27ξ3 − 9ξ2 − 27ξ + 9) ,

φ3 = 1
16
(−27ξ3 − 9ξ2 + 27ξ + 9) , φ4 = 1

16
(9ξ3 + 9ξ2 − ξ − 1)

(27)

For shear tractions in direction x3, nf = 3 and the shape functions are

φ1 =
1

8

(

9ξ2 − 1
)

, φ2 =
1

4

(

−9ξ2 − 6ξ + 3
)

, φ3 =
1

8

(

9ξ2 + 12ξ + 3
)

(28)

Finally, for the base reaction nf = 1 and a constant approximation is used. Using the
shape functions presented above, the integrals that are not singular may be numerically
calculated using Gauss points. The term referent to the load lines becomes singular only
when the source point belongs to a load line base which is being integrated. In this case,
the integral calculation is analytical.
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Writing Equation (28) for all boundary points plus the points defined on each load
line, the following system of equations is obtained:

[H ] {u} = [G] {p} − [M ] {s} (29)

Matrix [M ] is obtained from the integrals calculated for all load lines, and vector {s}
contains the tractions prescribed for them. As the number of equations is equal to the
number of unknowns, the system may be solved obtaining all unknowns.

5 FEM-BEM COUPLING

Each pile is modeled using a single finite element with polynomial shape functions.
Lateral displacements are approximated using fourth degree polynomials {ϕ}. Vertical
displacements and lateral tractions are approximated using third degree polynomials {φ}.
Vertical tractions are approximated using second degree polynomials {ω} and the tractions
at the pile base are considered constant. Using a dimensionless coordinate ξ = x3

L
, where

x3 is the global vertical coordinate and L is the pile length, {ϕ}, {φ} and {ω} may be
written as:

{ϕ} =























−99
4
ξ4 + 45ξ3 − 85

4
ξ2 + 1

−9
2
ξ4L+ 9ξ3L− 11

2
ξ2L+ ξL

81
2
ξ4 − 135

2
ξ3 + 27ξ2

−81
4
ξ4 + 27ξ3 − 27

4
ξ2

9
2
ξ4 − 9

2
ξ3 + ξ2























(30)

{φ} =















−9
2
ξ3 + 9ξ2 − 11

2
ξ + 1

27
2
ξ3 − 45

2
ξ2 + 9ξ

−27
2
ξ3 + 18ξ2 − 9

2
ξ

9
2
ξ3 − 9

2
ξ2 + ξ















(31)

{ω} =







9
2
ξ2 − 9

2
ξ + 1

−9ξ2 + 6ξ
9
2
ξ2 − 3

2
ξ







(32)

The next step is obtaining the total potential energy function, considering internal and
external contributions. To obtain the final system of equations, such function must be
minimized with respect to the nodal parameters. The result is:

[K] {u} = {f} − [Q] {y} → [K] {u} = {f} − {r} (33)

where [K] is the stiffness matrix of the pile, {u} contains nodal displacements, {f} con-
tains nodal loads, {y} contains distributed tractions and [Q] is a matrix that transforms
distributed tractions into nodal loads. Therefore, {r} contains nodal loads that represent
the distributed loads.

Now a brief description of the triangular finite element used for the raft and slabs will
be presented. The element has three nodes at its vertices as presented in Figure 4a with
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Figure 4: Triangular finite element.

the local node numbering and a local rectangular system of coordinates xi, where the
superscript i indicates the direction. Each node, indicated with the subscript j, has six
degrees of freedom (DOFs). Three of them, uj, vj and θ3j , may be visualized in Figure 4b
which refers to the membrane effects. The other three, wj, θ

1
j and θ2j , are presented in

Figure 4c which refers to the plate effects. In Figure 4c, rotational DOFs are indicated
with a double arrow for better visualization. All DOFs of the finite element may be
arranged into three vectors, one for each node, as shown below:

{u1}
T =

{

u1 v1 θ1
3 w1 θ1

1 θ1
2
}

{u2}
T =

{

u2 v2 θ2
3 w2 θ2

1 θ2
2
}

{u3}
T =

{

u3 v3 θ3
3 w3 θ3

1 θ3
2
}

(34)

Displacements at any point P of the finite element, with coordinates x1, x2 and x3,
may be written as

{u} =







u

v

w







=







u0 − x3
∂w0

∂x1

v0 − x3
∂w0

∂x2

w0







(35)

where u0, v0, and w0 are the displacements for the projection of P at the mid plane of
the finite element. The strain field may be obtained from the displacements as follows:

{ε} = {εm}+ {εp} =







∂u0

∂x1

∂v0
∂x2

∂u0

∂x2

+ ∂v0
∂x1







− x3











∂2w0

∂x1
2

∂2w0

∂x2
2

2 ∂2w0

∂x1∂x2











(36)

where index m corresponds to the membrane effect and the index p indicates the plate
effect. Equation (36) relates the strain field to the displacement field, which may be related
to the nodal displacements using the element shape functions. Using these functions and
Equation (36), it is possible to relate strains with the DOFs of the finite element as follows:

{ε} = [B]







u1

u2

u3







(37)
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It is also necessary to relate strains with stresses. For linear elasticity this may be done
using a matrix [D] which is obtained from Hooke’s law:

{σ} = [D] {ε} (38)

In the end, the stiffness matrix of the element is obtained by integrating the domain
Ω of the element:

[K] =

∫

Ω

[B]T [D] [B] dΩ (39)

More detail about the membrane and plate effects of this element may be consulted in
references [21, 22], respectively.

All finite element contributions, including piles and the raft, are assembled to the same
system of equations. This system has the form of Equation (33), which is later used to
demonstrate how the FEM/BEM coupling is made. The starting point is Equation (29),
which may be rewritten as:

[H ] {u} = [T ] {y} (40)

Matrix [T ] contains the terms of matrices [G] and [M ] and {y} contains the distributed
loads of vectors {p} and {s}. Next step is isolating the distributed loads, which are
transformed in nodal loads using a matrix [Q].

[T ]−1 [H ] {u} = {y} → [B] {u} = {y} (41)

[Q] [B] {u} = [Q] {y} → [D] {u} = {r} (42)

Before relating Equations (33) and (42), they must be expanded as to contain all
degrees of freedom defined in the coupled FEM-BEM model. The result is

[

K̄
]

{ūFEM} =
{

f̄
}

− {r̄FEM} ,
[

D̄
]

{ūBEM} = {r̄BEM} (43)

These equations are related by imposing compatibility and equilibrium conditions,
which are {ūFEM} = {ūBEM} = {ū} and {r̄FEM} = {r̄BEM} = {r̄}. The following
expression is then obtained:

[

K̄
]

{ū} =
{

f̄
}

−
[

D̄
]

{ū} →
([

K̄
]

−
[

D̄
])

{ū} =
{

f̄
}

→
[

Ā
]

{ū} =
{

f̄
}

(44)

where {ū} contain all unknown displacements of the FEM-BEM model. Once the number
of equations is equal to the number of unknowns, the system may be solved obtaining all
unknowns.
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Figure 5: First example.

Figure 6: Mesh employed.
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6 EXAMPLES

6.1 Raft on a layered domain

Here a squared raft over a domain with 4 layers is considered, as presented in Figure 5
with all geometrical and material parameters. Young’s module and Poisson ratio are
named E and ν, respectively, while thickness is indicated as t. The subscript R is used
for the raft and numbers are used for the layers. Point A is at the center of the raft, point
B is at the side midpoint and an uniform 0, 1 MPa load is applied over it.

Figure 6 presents the mesh. The mesh for the surface and contacts between layers is
presented in Figure 6a, where dashed lines represent 48 IBEs and other ones represent
168 BEs. Figure 6b presents the 72 FE mesh employed for the raft with an xy system of
coordinates.

Displacements obtained for points A and B are presented in Table 1 with results
obtained by other authors. Good agreement may be observed. To complement this
example, the bending moment for axis x was calculated. The values obtained for points
A and B were, respectively, 3, 83× 10−2 kNm/m and 2, 20× 10−2 kNm/m.

dA (cm) dB (cm)
This work 0, 97 0, 74

[23] 1, 07 0, 78
[24] 1, 14 0, 87
[25] 1, 20 0, 89

Table 1: Vertical displacements

6.2 Building resting on a layered domain

The objective of this example is to demonstrate the generality of the presented formu-
lation. The problem to be analyzed is presented in Figure 7 and considers a building with
its foundations, resting on a layered media. In Figure 7a the lateral view is illustrated,
Figure 7b contains the standard floor considered and in Figure 7c is presented the top
view of the structural foundations included.

The Poisson Ratio is zero for all soil layers. The elasticity modulus of the layers is 60
MPa for the top one, 80 MPa for the second and 90000 MPa for the base layer. The
thickness is 15 m for the top layer, 20 m for the second and the base layer is considered
infinite. The diameter of all piles is 0, 5 m, their length is 10 m and they are spaced
of 5 m. The square raft has size 20 m and thickness 0, 5 m. The elasticity modulus of
all materials modeled with the FEM is 15000 MPa and their Poisson ratio is 0, 2. This
includes all piles, beams, columns, slabs and the raft.

The building has four floors, as shown in Figure 7a. All floors have the same standard
geometry, as presented in Figure 7b, with a slab with thickness 0, 3 m, four beams sup-
porting this slab and four columns supporting the beams. A square cross section size 1

13
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Figure 7: Soil-building interaction

m is used for all beams and columns. The base of each column is connected to the raft
at the same node where a corner pile is connected. Corner piles are numerated in Figure
7c as 1, 3, 7 and 9.

Figure 8: Vertical loads applied

The loads considered are vertical and presented in Figure 8. They are uniformly dis-
tributed over the slabs, with an intensity of 0, 04 MPa.

Figure 9 presents the FE-BE-IBE mesh employed in the example. Figure 9a contains
the top view of the mesh used for the soil surface and contacts between layers, totalizing
480 BEs and 96 IBEs. The square detached at the center indicates the position of the
raft at the surface. In Figure 9b is illustrated the mesh with 32 FEs used for the raft,
together with the position of the piles. Finally, Figure 9c contains the 32 FE mesh used
for the slabs. Lines detached at the boundary indicate the FEs used for beams, totalizing

14
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Figure 9: FE/BE/IBE mesh employed

16 FEs for each floor. Furthermore, each part of the columns between floors is divided
into 4 FEs. Considering all floors plus the raft, the total number of two-dimensional FEs
is 160 and the total of one-dimensional FEs is 128.

Piles are also simulated with the FEM, employing the FE with 14 parameters presented
previously. The axis of any pile is orthogonal to the surface of the soil.

Figure 10: Vertical displacement at slabs

The vertical displacements along the axis of the piles are shown in Figure 10. Only
piles number 1, 2 and 5 are presented (see Figure 7c) because the results are symmetric
for the other ones. Piles placed at corners presented higher displacements, with the value
of 12, 2 mm at the top. This result may be considered coherent because the base of the
columns of the building is placed exactly over the corner piles. The vertical displacement
obtained at the top of pile 2 was 7, 3 mm and for pile 5 it was 6, 9 mm.

Figure 11 contains results calculated for the fourth floor, as numbered in Figure 7a.
Values are evaluated along a diagonal line on the floor, which extremes are placed at
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Figure 11: Vertical displacement at the fourth floor

columns C1 and C4, as shown in Figure 7b. Two results are presented. One is considering
the elastic foundation presented in Figure 7a and the other is considering a rigid base.
For the rigid base, displacements at the base of the columns are simply restrained. It may
be observed that the vertical displacements of the slab are significantly higher when an
elastic base is considered, what may be considered a predictable result. The maximum
displacement at the slab for a rigid base is 28, 8 mm and for an elastic foundation it is
41, 0 mm.

7 CONCLUSIONS

In this paper a formulation for building-soil interaction analysis was presented. The
FEM/BEM equations together with the techniques from references [17, 18] contributed
with reducing the total number of degrees of freedom. Piles are modeled using one-
dimensional FEs, whose influence in the soil is computed by integrating load lines. Two
examples were presented. On the first one the values obtained were compared with other
publications and good agreement was observed. On the second one no comparison was
presented, nevertheless the results obtained were considered coherent. In the end, it may
be concluded that the presented formulation is a powerful and attractive alternative for
soil-structure interaction analysis.
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