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Abstract. A modal analysis, developed in plane dynamics ameaf elasticity, for periodic
masonry structure is presented and validated bptndans of a continuum modelling within
the frame of the micropolar continuum theory andaofliscrete model (DEM) within the
frame of a molecular dynamic algorithm.

For running-bond masonry brickwork numerical mialgp models already exist [1,2] in
static frameworks [2] and in dynamic frameworks]3,

Here the aim is twofold: i) a multi-scale modal lgse&s both at Representative Elementary
Volume (REV) level -micro-scale- and at masonry glalevel -macro-scale-; ii) a multi-
model analysis both with continuum micro-structuaed discrete models such as to evaluate
sensitivity to masonry local microstructure andssgvity to characteristic length of REV by
reference to masonry panel size.

Two models are presented and compared. A discileteeat model and a continuous
micropolar model based on analytical homogenizgpi@mtedures. Both models are based on
the following assumptions: i) the structure is casgd of rigid blocks; ii) the mortar joints
are modelled as interfaces. The rigid block hypsithés particularly suitable for historical
masonry, in which stone blocks may be assumedgas bodies. Continuum homogenized
model provides, in an analytical form, constitutiequivalent elastic functions, mass and
inertia; discrete model describes masonry as @ geleton such as to evaluate both its
global and local behaviour.

A parametric analysis is carried out to investigdue effect of i) masonry texture (running
versus header bond); ii) size of heterogeneitycfbldimensions) respect panel dimensions.
Modal analysis is hence carried on for a REV affi@@dint panels. Focus is on the sensitivity
to heterogeneity size such as to verify modelsibélty and applicability field.

1 INTRODUCTION

Masonry is a composite material formed by bricksl amortar arranged more or less
regularly and adopted for many centuries as stractmaterial. Dynamic actions may
represent the major risk of collapse of brickwoaksl, despite the progress achieved so far in
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science and mechanics, the assessment of themisgierformance remains a challenging
task. Generally, masonry buildings may fail undgnainic actions following two different
mechanisms: in-plane and out-of plane. The firg @ncharacterized by shear deformations
and fissures, while the second one may cause Ithwg t{or toppling) of entire portions of
wall. Then, reliable physical and numerical modeks worth of recommendation.

Particularity of masonry is that the size of hegemeity (size of block) is not negligible
with respect to the global size of structural elatras in several composite materials. For this
reason, in the last twenty years, several researctieveloped models for the study of
masonry or masonry-like materials adopting différ@pproaches. A heterogeneous FE model
may be adopted for modelling small single paneid, ibis impracticable in a real scale
context for computational limits. DEM is suitabler fstudying panels of consistent size and
also for assemblage of panels, but it is limitechiggothesis of rigid blocks and mortar joint
modelled as interfaces [5], that may be adoptedniodelling historical masonry. Continuous
equivalent models were proposed based on homogemzdentification procedures.
Standard Cauchy continuous models were obtainedyiagp periodic homogenization
techniques and considering the elastic behaviouootfi brick and mortar [5,6,7]. On the
other hand, micropolar or higher order continuaenaiso adopted for studying masonry in
static frameworks [3,8,9]. These models were aldergled to dynamic fields [3,4].

In the present work, in-plane modal analysis of anag panels is carried on by adopting
and comparing four models: i) DEM, ii) heterogene®EM, iii) continuous Cauchy model
and iv) continuous micropolar model. Continuous eisdare based on analytical
identification procedures. All models are basedignl blocks hypothesis, whereas DEM and
continuous models are both based on mortar joinidetied as elastic interfaces.

Modal analyses are carried out for investigating ¢ffect of i) size of heterogeneity with
respect to panel dimensions, ii) block dimensidiord&urthermore, the opportunity to adopt a
micropolar continuum model instead of a Cauchy fwrethe modal analysis of masonry
panels is investigated. The heterogeneous FEMdptad for verifying all models reliability
and applicability field, together with results abtd by Brasile and Casciaro [10], assumed
as benchmark.

2 DISCRETE MODEL
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Figure 1. Masonry structure with running bond pattern.

In the present work, one leaf masonry panels hasingnning bond periodic masonry
pattern are considered. Block dimensions aefheight), b (width) and s (thickness).
Assuming rigid block hypothesis, the displacemédrthe generic blockB ; (Fig. 1) is a rigid
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motion referred to the displacement of its centre [5]:
U ) =u r U (y -y @)
whereu™ ={u;’, u;’} " is the translation vector ar@"’ is the rotation tensor, having one
componentw;’, of the blockB ;. Considering the regularity of the masonry pati&ig. 1),
the generic blockB ; is surrounded by six blockB ., ;.,, by means of six interfaces, | .
If ky andk; are equal to 1%, , is an horizontal interface; whereas wkih= +2 andk; = 0,
2, k, Is a vertical interface. The interactions betwé®s blocks through the interfaces are

represented by elastic forcds:'e, f,**2 and coupleci*’ that depend o'z, Al*> defined
as follows:

A:‘Ykz - uia,k‘,jafk2 _ uil‘j + kza(wiﬂgvhkz + miéj)/z (2)

1 3

Kok, ik gk, i i+k,j+k, i,j
A=, u, —kb(w, +to,)/4

and on relative rotatiody': between two neighbouring blocks. Elastic forced aative
displacements related to the generic interfﬁg% may be collected in the following vectors:

f :{ flkl,kz f Kk, Cl;],kz} T (3)

2

d={a" Ay 50gT

It is worth noting that vectall may be expressed in terms of the translation veatand
the rotationsw, of the blocks in contact along the interfakg, . The constitutive relation

that defines interaction between blogk; and B is f =K d . The interfacial stiffness

+hky, j+ky
matrix is K =(1/e)[id +(u+ApOe,], wheree, is the versor orthogonal to plane of the

interface,e = g, or &, is the actual thickness of vertical or horizomtadrtar joint andy, A are
the Lamé’s constants of the mortar. Herl€ezan assume two different forms, for horizontal
and vertical interfaces, respectively. In the folilng, instead of Lamé's constants, the bulk
and the shear modul(andG, respectively) of mortar are adopted; moreoverizbatal and
vertical mortar joints are assumed to have the ghinkness€’ = " = €) and the same elastic
properties K, = Kn = K, G, = G, = G) that depend on mortar elastic modulH$ and
Poisson’s ratio™:

K =E" /[1+v")(1- 2" )] (4)

G=E"/[2(1+Vv")]

Further details of the discrete model may be four{#,11,12].

2.1 Elastic energy and stiffness matrix
The elastic energy expended by the generic interagiven as follows:
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1 1 1 __ )
s :—j f7d dA:—j d'Kd dA=—d'Kd
29z, 2)5. 2

where the stiffness matriK of the generic interface, accordinglyKg may assume two
different forms for horizontal and vertical intesés and it may be expressed in terms of the

translation and rotations components of the blaoksontact along the interfacﬁkllkz. The

stiffness matrix of the entire panel is obtainedalsgembling the stiffness matrices of all the
interfaces.

2.2 Kinetic energy and mass matrix

Differently than the elastic energy, the kineti@rgy of the discrete system is not defined
at the interfacial level, but it involves directlye global displacements referred to the position

y"! of the centre of each block and it is given byshm of the kinetic energy of each block:
i 1 -ildy 2 AN sy 2 (6)
My = 20 = 22 00(0) (6 T +3(6) )

where m=px(alb®) is the mass of the block,is its density,J, = m(b*+a?)/12 is its
polar inertia respect tgs axis andu=du/dt. Mass and polar inertia may be corrected by
taking into account the mortar joint thickness,eesglly if it is not negligible with respect to
block plane dimensionab; thenm andJ; may be substituted byt =px[(a+e) ((b+e) [
and J;* =m*[(b+e) >+ a+e) 3/12 . The mass matrixM of the generic block may be
highlighted into the expression of the kinetic gyer

i (7)

m 0 0]y
] 1 <L i il i 1 L INT NA s i
I'Ihin=5{u1' U o,}J0 m 0 |qu, =E(u‘) Mu”
0 0 J||o

and the mass matrix of the entire panel is obtamedssembling the mass matrices over
the panel.

3 PLANE CONTINUUM MODEL

2
Y1
Y3

Figure 2: 2D continuum model.

A micropolar plane 2D model is defined, it is id&at by S middle plane of body in a
Euclidean coordinate systeny,(y.) of normal versore; along theys; coordinate direction
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(Fig. 2). The kinematic descriptors of a generiinpdelonging to the 2D continuum are
represented by the fieldgy), (y), that are respectively the translation vector estdtion
tensor of the generic point. Translationu(y) has two components,(y,,Y,),U,(Y,VY,),

whereas the rotatiof2(y) is a skew tensor with one component defined baves:

0 -o,y) (8)
Q(y) =
o o)
The generic displacements are described by thisfiel
u:S-V; Q:S-. Skw 9)

that completely describe the translation and thatimn of all points belonging t&.
Following the notation of [13], the static countarpis fully described by the field\,
collecting the in-plane actions, and by the fi€ldrepresenting the microcouple:

N:S-V; C:S- Skw (10)

The balance equations for the in plane case, imguidody forces and couplel,B) and
inertial forces and momen(e® i, J° Q) are:

divN +b = p® i (1)
divC -2SkwN +B = 3 Q
where div is an operator defined 8rp?® is the mass density of the equivalent continuum,
JZP is its polar inertia andi=d?u/dt*>. For the continuum, se¥l and C actions, the
infinitesimal potential energy and the kinetic enyeonS may be written as:
dn =1/2 [N dgradu + Q *+ CO(grag ) (12)
dni, =1/2p" u'u+3"d, k,]
where grad represents the gradient operatorSoif the adopted continuum follows
Cauchy’s hypotheses, the in-plane couple is asswegedl to zero [2,8]. The corresponding
infinitesimal potential energy and kinetic energg given by:
dn® =1/2 N Eym(gradu ) (13)
diy, =1/2[p" u'u]

4 MODEL FOR RIGID BLOCKS CONNECTED BY ELASTIC INTER FACES

A compatible identification procedure is carried [@d,14], assuming that the translation
and rotation of the center of the blo&; are equal to the same quantities in the center

chosen in the continuum modelu™ (y")=u(y), Q" (y")=Q(y). For a chosen

Representative Elementary Volume (REV) and a gieglass of regular displacements, the
energy expended by contact actions at the intesfacel the kinetic energy in the discrete
model (Egs. 5,7) are imposed to be coincident tsehin the continuous model (Egs. 12).
Assuming the geometry of the discrete system showé&d. 1, in the present work the REV
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chosen is characterized by four horizontal intexéaand a vertical interface at the centre of
the Cartesian coordinate system (Fig. 3).

i+1,j+1
yiyj yi+27j
yi+l,j-l

Figure 3: Representative Elementary Volume (REV) considéoedhe identification procedure.

Following [11], upper bounds for the strain enewjythe equivalent medium may be
obtained using a suitable kinematic field over REV. AssumingE as the macroscopic in
plane strain tensor in the equivalent medium, triouum equivalent in plane tensdrand
micro-couple tensdt are obtained by solving the following minimizatiproblem:

1/2E A E]+1/20rad OL Ograd2 F min, ;e oo (14)

where( is the strain energy averaged over the RE\ANdQ represent any strain-periodic
rigid body displacement of the blocks, kinematigalbmpatible withE. The set KC ofE-
kinematically compatible{,] is introduced:

KC(E,gradQ )= {[U,Q],u" =EF" +V"' Q" =" [v,0]0L%} (15)

where J,0] is the in-plane rigid displacement of blo& ; -respectively translation and

rotation. Hence, uniform boundary displacementratation are applied to the REV.
The approximate equivalent elastic coefficientsyaded by A, and L; and the equivalent

density and polar inertia must satisfy:

Lo 5¢ (16)

31

1/ Zmlll(Ell)z + 1/ ZmZZZZ(E 22)Z + 1/ lelZE 12f + 1/ m 2121E ;L2j + L (Bz
1/20p% (0 +ul)+ 360’ <
whereE;, = U » + o3, E21 = Uz 1 - 03 andg is the kinetic energy averaged over the REV.

Following the procedure proposed above, it is fidsdb define the equivalent micropolar
continuum. As well known, for the Cauchy continuufgs. 16 become:

1/ Zmlll (Ell)z + 1/ 2m2222(E 22)Z + ZAC ECIZ)Z S C (17)

1/20p* U7 +u)<E
where Ej, = E5, =1/ 2[{u, ,* U, ). The constitutive functions of the componentdNo&ind

Cle on S plane are the same obtained in [14] adopting eretis model and following the
same compatible identification procedure.

N =A [grad u + Q) (18)
Cle= Ligrad(Q)

The components of matri are given by the following expressions.

A, =[4K (" /a)+(b/a)G, (' /a)]/[4(e" / a)(e | b)] (19)
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A, =K [(€/a)
A, =0
A,,=G, (al€")
A, =K b*/(4ae')+G, (b/e)

The equivalent moduli for the micropolar continuane given by Egs. 19, moreover it can
be demonstrated that,, = (ALL[A )/ (A, A L) The components of diagonal matrix
L are given by:

L, = (b° /192)[16K a® / pe )+ K, b* /@e" )+ 15 a /e ] (19)
L,, =b’[K,a/ (48€")]
In the same manner, the identification of kinetiergy provides [3,15]:

p* =m/(alb®)=p (20)
J=J,/(alb®) =p(a”+b*)/12

4.1 Finite Element formulation

In order to perform modal analysis of masonry psn@presented by a micropolar
continuum, an enriched triangular FE in plane strefmte is adopted. Such FE may be
obtained by simply adding a rotational degree eéfiom to each node of the element and by
discretizing rotationss into the element with the linear polynomials conmhyoadopted in
standard triangular elements. This FE was studietthe past in [16], where linear analysis
was presented and several patch tests were prapgosth@ present work the stiffness matrix
of the triangular element is equal to the one psepdoin [16] and the elastic matrix is
composed by matrices andL. The mass matrix of the element is given by:

M*=s[ NI N dA (23)
T

Where N’ is the matrix of the shape functioriB,is the area of the generic triangular
elementand,, =diagp p JZ°}.

5 NUMERICAL EXAMPLES

A numerical campaign is carried on for evaluatihg performances of both discrete and
micropolar models, the latter adopted for the atutste functions of the enriched FEM, in
determining the natural frequencies and the coomdipg modal shapes of masonry-like
panels with different restraint conditions, varyibigck dimension rati@ = b/a and varying
the size of heterogeneity. For the latter purptisescale factor = L/b = H/a is introduced in
order to perform modal analysis by increasing thenlper of blocks along both plane
directions, maintaining fixed panel overall dimems (,H) and block dimension ratio. The
same scale factor was adopted in [14] for evalgatie effects of size of heterogeneity on
linear elastic analysis of masonry panels.



Daniele Baraldi, Antonella Cecchi

Moreover, another purpose of this campaign consmstevaluating the opportunity of
adopting a micropolar continuum instead of a tradél Cauchy continuum for determining
in-plane natural frequencies and modal shapes ebnrg-like panels. In order to validate the
proposed models (discrete and micropolar continutlne)work of Brasile and Casciaro [10]
is taken as benchmark solution for first; furthereyoa heterogeneous FEM is adopted in
order to have reference solutions. The followisg lesumes the models considered:

1) Discrete Element Model (DEM);

2) Micropolar FE model (FEM microp.);

3) Benchmark solution (Brasile and Casciaro [10]);

4) Cauchy FE model (FEM Cauchy);

5) Heterogeneous FE model (FEM Hetero).

The heterogeneous FEM (5) is represented by a atrgD FEM where quadrilateral
elements in plane stress state are used and njarits and elastic blocks are distinguished
by adopting different elastic parameters. In patéic the elastic modulus of the blocks is
assumed 10times larger than that of mortar in order to siatelthe infinite rigidity of blocks
with respect to mortar joints. A quite rough mesfinement (Fig. 4a) is adopted in order to
avoid a huge number of degrees of freedom involwetthe analysis of panels with a large
number of blocks. Micropolar (2) and Cauchy (4)iR&dels are defined by subdividing panel
length and height intag 1 andng » subdivisions, respectively, and dividing eachaagte by
its diagonals (Fig. 4b); thenm ; % ng > triangular elements are defined in order to ob&ain
symmetric mesh.

b
Figure 4: (a) detail of the heterogeneous FEM, (b) detaih@fropolar and Cauchy FEMs.

EY = 200 MPa¥ = 0.2

EM =200MPa, G =10MPa

1.55m

H

5 | L=624m | \ L=155m | b

Figure 5: (a) rectangular panel studied by Brasile and Cas¢i®], (b) square panel having 6.

5.1 Rectangular panel

The masonry panel defined in [10] is considered.(ba). Modal analysis is performed for
both free panel and panel with fixed base. Figh@s the first four eigenpairs of the free
panel obtained with DEM (first row) and micropoleBEM (second row), whereas Fig. 7
shows the same results referred to the panel wid fbase. As it is shown in Tab. 1,
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vibration periods given by DEM -err. (1)- are irygood agreement with benchmark results
-T (3)-, if the panel is free, whereas differenaes larger for the panel with fixed base due to
the different block boundary conditions adoptedthg models (the model in [10] adopts

boundary conditions along joints, whereas the prteB&M has boundary conditions at block

centres). The micropolar FEM -err (2)- appearseaajbite more far from benchmark model

with respect to the DEM, however differences aeptable.

0.043008 [sec.] 0.030713 [sec] 0.026946 [sec.] 0.019587 [sec.]

0.039796 [sec] 0.029102 [sec] 0.023742 [sec] 0.017211 [sec]

Figure 6: First four eigenparis of a free rectangular paD&M (first row), micropolar FEM (second row).

0.10937 [sec] 0.03667 [sec] 0.022644 [sec] 0.02179 [sec]

0.097284 [sec] 0.03254 [sec] 0.020546 [sec] 0.019739 [sec]

RIS

IXIXIXIX]

Figure 7: First four eigenparis of a rectangular panel wixed base, DEM (first row), micropolar FEM (second
row).

Table 1 Vibration periods of the rectangular panel [I@mparison with DEM (1) and micropolar FEM (2).

free panel panel with fixed base
mode T (3) [sec] err.(1) [%] err.(2) [%] T (3) [sec] err.(1) [%] err.(2) [%0]
1 0.0425 1.20 -7.47 0.1183 -7.55 -11.05
2 0.0302 1.70 -5.25 0.0395 -7.16 -11.26
3 0.0267 0.92 -11.89 0.0230 -1.55 -9.26
4 0.0192 2.02 -12.14 0.0226 -3.58 -9.41
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5.2 Square panel — sensitivity to size of heterogeity

A square panel made by UNI bricks£ 250 mms= 120 mma = 55 mm) with standard
mortar joint thicknessg( = &, =e =10 mm) is considered. Mass density assumeddok® is
p = 1800 kg/m. The panel is fixed at the base and its dimensimak = H = 1550 mm. Fig.
5b shows the case characterized by6 and Fig. 7 shows the first three eigenpaitaiabd
with the DEM. First and second mode shapes represéexural deformation, whereas the
second one is a pure vertical deformation. Figsh@w separately the first three vibration
periods of the panel obtained with different modaf&l increasing. As expected, results
obtained with the Cauchy model are not influencedhe scale factor, whereas results given
by other models converge to those given by the Bawne. The behaviour of micropolar
model converge to that of Cauchy model faster wétspect to the DEM if flexural mode
shapes are considered, whereas the second mode shsimple vertical deformation, is not
influenced byr. The heterogeneous FEM appear to be more rigiddbizer models due to the
rough mesh refinement adopted, anyway for thisoreedifferences are acceptable.

0.0075984 [sec] 0.0032169 [sec] 0.0028774 [sec]

Figure 7: First three eigenparis of a square panel with fixase and = 6 modelled by DEM.
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0,003

0,0029
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0,0028 —e—1) DEM
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0 10 r 20 30 —a—5) FEM Hetero

0,0027

Figure 8: First three eigenparis of a square panel with fixasle and increasimg
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5.3 Square panel — sensitivity to block dimensioratio

Here the effect of block dimension ratic= b/a on modal shapes and vibration periods is
taken into account by considering the square paiiklfixed base, maintaining block height
a fixed and varying its widtlh. For instance, the panel in Fig. 5b is charaatérizys = 5 and
represent a ‘running bond’ texture pattern, wheeepanel withe = 2 may represent a ‘header
bond’ texture pattern. Fig. 9a shows the first ¢hvération periods of the square panel for
increasinge obtained with DEM (1), whereas Fig. 9b shows défees of micropolar FEM
(2) with respect to DEM results. It is clear thatipds tend to converge to constant values for
increasing and errors committed by adopting the micropolaMREecrease for increasinyg
except for the second eigenpair, characterized wertical deformation that is not well
approximated by the micropolar model with respedht other eigenpairs, as it has been seen
in the previous example.

0,009

-3,00%

T
|
0,008 \0\1;
-2,50%

0,007

-2,00% §

0,
£ -1,50%
0,005 — =~ — = = = — @

T [sec]

- )0/
00044 - - - _____ 1,00%

—o—T1
—m—T2

|
0,003 = e .- e -0,50%

0,002

0,00%

—&— T3

a b

Figure 9: First three eigenparis of a square panel with fixase and increasirngdetermined with DEM (a),
errors of micropolar FEM with respect to DEM (b).

12 CONCLUSIONS

- In the present work, an existing DEM has been alddnto the field of in-plane
modal analysis of masonry panels with regular textauch model turned out to be
simple and effective if compared with existing fleswand with an heterogeneous
FEM.

- A micropolar model has been taken into accouninfodelling masonry behaviour,
such model turned out to be suitable for deterngimpanel vibration periods and
modal shapes with respect to a traditional Cauclodeh especially if size of
heterogeneity is larger than panel dimensions. Mgeeerally, both DEM and
micropolar FEM converged to Cauchy solutions faréasing number of blocks.

- Vibration periods and modal shapes have turnedtmuie slightly influenced by
block dimension ratio.

- The modal analysis performed with DEM allowed tdirte easily the stiffness
matrix of a panel with regular texture and rigidodk hypothesis, further
developments may regard the extension of the modelt of plane modal analysis
and nonlinear dynamic analysis.
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