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Abstract. A modal analysis, developed in plane dynamics and linear elasticity, for periodic 
masonry structure is presented and validated both by means of a continuum modelling within 
the frame of the micropolar continuum theory and of a discrete model (DEM) within the 
frame of a molecular dynamic algorithm. 
For running-bond masonry brickwork numerical micropolar models already exist [1,2] in 
static frameworks [2] and in dynamic frameworks [3,4]. 
Here the aim is twofold: i) a multi-scale modal analysis both at Representative Elementary 
Volume (REV) level -micro-scale- and at masonry panel level -macro-scale-; ii) a multi-
model analysis both with continuum micro-structured and discrete models such as to evaluate 
sensitivity to masonry local microstructure and sensitivity to characteristic length of REV by 
reference to masonry panel size. 
Two models are presented and compared. A discrete element model and a continuous 
micropolar model based on analytical homogenization procedures. Both models are based on 
the following assumptions: i) the structure is composed of rigid blocks; ii) the mortar joints 
are modelled as interfaces. The rigid block hypothesis is particularly suitable for historical 
masonry, in which stone blocks may be assumed as rigid bodies. Continuum homogenized 
model provides, in an analytical form, constitutive equivalent elastic functions, mass and 
inertia; discrete model describes masonry as a rigid skeleton such as to evaluate both its 
global and local behaviour. 
A parametric analysis is carried out to investigate the effect of i) masonry texture (running 
versus header bond); ii) size of heterogeneity (block dimensions) respect panel dimensions. 
Modal analysis is hence carried on for a REV and different panels. Focus is on the sensitivity 
to heterogeneity size such as to verify models reliability and applicability field. 
 
1 INTRODUCTION 

Masonry is a composite material formed by bricks and mortar arranged more or less 
regularly and adopted for many centuries as structural material. Dynamic actions may 
represent the major risk of collapse of brickworks and, despite the progress achieved so far in 
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science and mechanics, the assessment of their seismic performance remains a challenging 
task. Generally, masonry buildings may fail under dynamic actions following two different 
mechanisms: in-plane and out-of plane. The first one is characterized by shear deformations 
and fissures, while the second one may cause the tilting (or toppling) of entire portions of 
wall. Then, reliable physical and numerical models are worth of recommendation. 

Particularity of masonry is that the size of heterogeneity (size of block) is not negligible 
with respect to the global size of structural element as in several composite materials. For this 
reason, in the last twenty years, several researchers developed models for the study of 
masonry or masonry-like materials adopting different approaches. A heterogeneous FE model 
may be adopted for modelling small single panels, but it is impracticable in a real scale 
context for computational limits. DEM is suitable for studying panels of consistent size and 
also for assemblage of panels, but it is limited by hypothesis of rigid blocks and mortar joint 
modelled as interfaces [5], that may be adopted for modelling historical masonry. Continuous 
equivalent models were proposed based on homogenization-identification procedures. 
Standard Cauchy continuous models were obtained applying periodic homogenization 
techniques and considering the elastic behaviour of both brick and mortar [5,6,7]. On the 
other hand, micropolar or higher order continua were also adopted for studying masonry in 
static frameworks [3,8,9]. These models were also extended to dynamic fields [3,4]. 

In the present work, in-plane modal analysis of masonry panels is carried on by adopting 
and comparing four models: i) DEM, ii) heterogeneous FEM, iii) continuous Cauchy model 
and iv) continuous micropolar model. Continuous models are based on analytical 
identification procedures. All models are based on rigid blocks hypothesis, whereas DEM and 
continuous models are both based on mortar joints modelled as elastic interfaces. 

Modal analyses are carried out for investigating the effect of i) size of heterogeneity with 
respect to panel dimensions, ii) block dimension ratio. Furthermore, the opportunity to adopt a 
micropolar continuum model instead of a Cauchy one for the modal analysis of masonry 
panels is investigated. The heterogeneous FEM is adopted for verifying all models reliability 
and applicability field, together with results obtained by Brasile and Casciaro [10], assumed 
as benchmark. 

2 DISCRETE MODEL 
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Figure 1: Masonry structure with running bond pattern. 

In the present work, one leaf masonry panels having a running bond periodic masonry 
pattern are considered. Block dimensions are: a (height), b (width) and s (thickness). 
Assuming rigid block hypothesis, the displacement of the generic block ,i jB  (Fig. 1) is a rigid 
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motion referred to the displacement of its centre ,i jy  [5]: 

, , , ,( ) ( )i j i j i j i j= + −u y u Ω y y  (1) 

where , , ,
1 2{ , }i j i j i j Tu u=u  is the translation vector and ,i j

Ω  is the rotation tensor, having one 

component ,
3
i jω , of the block ,i jB . Considering the regularity of the masonry pattern (Fig. 1), 

the generic block ,i jB  is surrounded by six blocks 
1 2,i k j kB + +  by means of six interfaces 

1 2,k kΣ . 

If k1 and k2 are equal to ±1, 
1 2,k kΣ  is an horizontal interface; whereas with k1 = ±2 and k2 = 0, 

1 2,k kΣ  is a vertical interface. The interactions between the blocks through the interfaces are 

represented by elastic forces 1 2 1 2, ,
1 2,k k k kf f  and couple 1 2,

3
k kc  that depend on 1 2 1 2, ,

1 2,k k k k∆ ∆  defined 

as follows: 

1 2 1 2 1 2
, , ,, ,

1 1 1 2 3 3
(ω ω ) / 2k k i k j k i k j ki j i ju u k a+ + + +∆ = − + +  (2) 

1 2 1 2 1 2
, , ,, ,

2 2 2 1 3 3
= (ω ω ) / 4k k i k j k i k j ki j i ju u k b

+ + + +∆ − − +   

and on relative rotation 1 2,
3
k kδ  between two neighbouring blocks. Elastic forces and relative 

displacements related to the generic interface 
1 2,k kΣ  may be collected in the following vectors: 

1 2 1 2 1 2
, , ,

1 2 3
{ }k k k k k k Tf f c=f  (3) 

1 2 1 2 1 2
, , ,

1 2 3
{ }k k k k k k T= ∆ ∆d δ   

It is worth noting that vector d may be expressed in terms of the translation vectors u and 
the rotations 3ω  of the blocks in contact along the interface 

1 2,k kΣ . The constitutive relation 

that defines interaction between block ,i jB  and 
1 2,i k j kB + +  is =f K d . The interfacial stiffness 

matrix is (1/ )[ ( ) ]e ⊥ ⊥= + + ⊗K I e eµ µ λ , where ⊥e  is the versor orthogonal to plane of the 

interface, e = ev or eh is the actual thickness of vertical or horizontal mortar joint and µ, λ are 
the Lamé’s constants of the mortar. Hence, K  can assume two different forms, for horizontal 
and vertical interfaces, respectively. In the following, instead of Lamé's constants, the bulk 
and the shear moduli (K and G, respectively) of mortar are adopted; moreover, horizontal and 
vertical mortar joints are assumed to have the same thickness (ev = eh = e) and the same elastic 
properties (Kv = Kh = K, Gv = Gh = G) that depend on mortar elastic modulus EM and 
Poisson’s ratio νM: 

/ [(1 )(1 2 )]M M MK E= + ν − ν  (4) 

/ [2(1 )]M MG E= + ν   

Further details of the discrete model may be found in [5,11,12]. 

2.1 Elastic energy and stiffness matrix 

The elastic energy expended by the generic interface is given as follows: 



Daniele Baraldi, Antonella Cecchi 

 4

1 2

, ,1 2 1 2

, 1 1 1
=

2 2 2k k k k

k k T T TdA dA
Σ Σ

Π = =∫ ∫f d d K d d K d  
(5) 

where the stiffness matrix K  of the generic interface, accordingly to K , may assume two 
different forms for horizontal and vertical interfaces and it may be expressed in terms of the 
translation and rotations components of the blocks in contact along the interface 

1 2,k kΣ . The 

stiffness matrix of the entire panel is obtained by assembling the stiffness matrices of all the 
interfaces. 

2.2 Kinetic energy and mass matrix 

Differently than the elastic energy, the kinetic energy of the discrete system is not defined 
at the interfacial level, but it involves directly the global displacements referred to the position 

,i jy  of the centre of each block and it is given by the sum of the kinetic energy of each block: 

, , 2 , 2 , 2

1 2 3 3

1
{ [( ) ( ) ] ( ω ) ] }

2

i j i j i j i j

kin kin
m u u JΠ = Π = + +∑ ∑ && &  

(6) 

where ( )m a b s= ρ× ⋅ ⋅  is the mass of the block, ρ is its density, 2 2
3 ( ) /12J m b a= +  is its 

polar inertia respect to y3 axis and /u du dt=& . Mass and polar inertia may be corrected by 
taking into account the mortar joint thickness, especially if it is not negligible with respect to 
block plane dimensions a,b; then m and J3 may be substituted by * [( ) ( ) ]v hm a e b e s= ρ× + ⋅ + ⋅  

and 2 2
3* *[( ) ( ) ] /12h vJ m b e a e= + + + . The mass matrix M  of the generic block may be 

highlighted into the expression of the kinetic energy: 
,

1

, , , , , , ,

1 2 3 2

,

3 3

0 0
1 1

{ ω } 0 0 ( )
2 2

0 0 ω

i j

i j i j i j i j i j i j T i j

kin

i j

m u

u u m u

J

Π = =

  
  
  
     

u M u

&

&& & & & &

&

 

(7) 

and the mass matrix of the entire panel is obtained by assembling the mass matrices over 
the panel. 

3 PLANE CONTINUUM MODEL 
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Figure 2: 2D continuum model. 

A micropolar plane 2D model is defined, it is identified by S middle plane of body in a 
Euclidean coordinate system (y1, y2) of normal versor e3 along the y3 coordinate direction 
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(Fig. 2). The kinematic descriptors of a generic point belonging to the 2D continuum are 
represented by the fields u(y), Ω(y), that are respectively the translation vector and rotation 
tensor of the generic point y. Translation u(y) has two components,1 1 2 2 1 2( , ), ( , )u y y u y y , 

whereas the rotation Ω(y) is a skew tensor with one component defined as follows: 

3

3

0 ω ( )
( )

ω ( ) 0

−
=
 
 
 

y
Ω y

y
 

(8) 

The generic displacements are described by the fields 

: S ;   : S SkwV V→ →u Ω  (9) 

that completely describe the translation and the rotation of all points belonging to S. 
Following the notation of [13], the static counterpart is fully described by the field N, 
collecting the in-plane actions, and by the field C, representing the microcouple: 

: S ;   : S SkwV V→ →N C  (10) 

The balance equations for the in plane case, including body forces and couples (b,B) and 
inertial forces and moments 2D 2D

3( , )Jρ u Ω&&&&  are: 

2Ddiv + = ρN b u&&  (11) 

2D

3
2Skwdiv J− + =C N B Ω&&   

where div is an operator defined on S, ρ2D is the mass density of the equivalent continuum, 
2D
3J  is its polar inertia and 2 2/d dt=u u&& . For the continuum, set N and C actions, the 

infinitesimal potential energy and the kinetic energy on S may be written as: 

d 1/ 2 [ (grad ) (grad )]Π = ⋅ + + ⋅N u Ω C Ω  (12) 

2D 2D

3 3 3
d 1/ 2 [ ]T

kin
JΠ = ρ + ω ωu u & && &   

where grad represents the gradient operator on S. If the adopted continuum follows 
Cauchy’s hypotheses, the in-plane couple is assumed equal to zero [2,8]. The corresponding 
infinitesimal potential energy and kinetic energy are given by: 

Cd 1/ 2 [ (grad )]symΠ = ⋅N u  (13) 

2DCd 1 / 2 [ ]T

kinΠ = ρ u u& &   

4 MODEL FOR RIGID BLOCKS CONNECTED BY ELASTIC INTER FACES 

A compatible identification procedure is carried on [11,14], assuming that the translation 
and rotation of the center of the block ,i jB  are equal to the same quantities in the center y 

chosen in the continuum model: , , , ,( ) ( ), ( ) ( )i j i j i j i j= =u y u y Ω y Ω y . For a chosen 
Representative Elementary Volume (REV) and a given class of regular displacements, the 
energy expended by contact actions at the interfaces and the kinetic energy in the discrete 
model (Eqs. 5,7) are imposed to be coincident to those in the continuous model (Eqs. 12). 
Assuming the geometry of the discrete system showed in Fig. 1, in the present work the REV 
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chosen is characterized by four horizontal interfaces and a vertical interface at the centre of 
the Cartesian coordinate system (Fig. 3). 

y i,j

y i+1,j-1

y i+1,j+1

y i+2,j

 

Figure 3: Representative Elementary Volume (REV) considered for the identification procedure. 

Following [11], upper bounds for the strain energy of the equivalent medium may be 
obtained using a suitable kinematic field over the REV. Assuming E as the macroscopic in 
plane strain tensor in the equivalent medium, the continuum equivalent in plane tensor A and 
micro-couple tensor L  are obtained by solving the following minimization problem: 

( , KC( ,grad )
1 / 2 [ ] 1 / 2 grad [ grad ] min ∈⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = ζ

U Ω E Ω
Ε A E Ω L Ω  (14) 

where ζ is the strain energy averaged over the REV, U and Ω represent any strain-periodic 
rigid body displacement of the blocks, kinematically compatible with E. The set KC of E-
kinematically compatible [U,Ω] is introduced: 

, , , , , 2KC( , grad ) {[ , ], , ,[ , ] }i j i j i j i j i j L= = ⋅ + = ∈E Ω U Ω u E y v Ω ω v ω  (15) 

where [v,ω] is the in-plane rigid displacement of block ,i jB  -respectively translation and 

rotation. Hence, uniform boundary displacement and rotation are applied to the REV. 
The approximate equivalent elastic coefficients, denoted by ijklA  and ijL  and the equivalent 

density and polar inertia must satisfy: 
2 2 2 2 2 2

1111 11 2222 22 1212 12 2121 12 13 3,1 23 3,2
1 / 2 ( ) 1 / 2 ( ) 1 / 2 ( ) 1 / 2 ( ) ω ω ζA E A E A E A E L L⋅ + ⋅ + ⋅ + ⋅ + + ≤  (16) 

2D 2 2 2D 2

1 2 3 3
1 / 2 ( )u u J⋅ ρ + + ω ≤ ξ&& &   

where E12 = u1,2 + ω3, E21 = u2,1 - ω3 and ξ is the kinetic energy averaged over the REV. 
Following the procedure proposed above, it is possible to define the equivalent micropolar 

continuum. As well known, for the Cauchy continuum, Eqs. 16 become: 
2 2 C C 2

1111 11 2222 22 1212 12
1 / 2 ( ) 1 / 2 ( ) 2 ( ) ζA E A E A E⋅ + ⋅ + ≤  (17) 

2D 2 2

1 2
1 / 2 ( )u u⋅ ρ + ≤ ξ& &   

where C C
12 21 1,2 2,11/ 2 ( )E E u u= = ⋅ + . The constitutive functions of the components of N and 

⋅C e on S plane are the same obtained in [14] adopting a discrete model and following the 
same compatible identification procedure. 

( )grad= ⋅ +N A u Ω  (18) 

( )grad⋅ = ⋅C e L Ω   

The components of matrix A are given by the following expressions. 

1111
= [4 ( / ) ( / ) ( / )] / [4( / )( )]/h v h v

v h
A K e a b a G e a e a e b+  (19) 
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2222
( / )/ h

h
A K e a=   

1122
0A =   

1212
= ( / )h

h
A G a e   

2121

2= / (4 ) ( / )h v

h v
A K b a e G b e+   

The equivalent moduli for the micropolar continuum are given by Eqs. 19, moreover it can 
be demonstrated that C1212 1212 2121 1212 2121( ) / ( )A A A A A= ⋅ + . The components of diagonal matrix 

L  are given by: 
2 2 2

13
( / 192)[16 / ( ) / ( ) 12 / ]v h h

v h h
L b K a b e K b a e G a e= + +  (19) 

2

23
[ / (48 )]h

h
L b K a e=   

In the same manner, the identification of kinetic energy provides [3,15]: 
2D / ( )m a b sρ = ⋅ ⋅ = ρ  (20) 

2D 2 2

3 3
/ ( ) ( ) / 12J J a b s a b= ⋅ ⋅ = ρ +   

4.1 Finite Element formulation 

In order to perform modal analysis of masonry panels represented by a micropolar 
continuum, an enriched triangular FE in plane stress state is adopted. Such FE may be 
obtained by simply adding a rotational degree of freedom to each node of the element and by 
discretizing rotations ω3 into the element with the linear polynomials commonly adopted in 
standard triangular elements. This FE was studied in the past in [16], where linear analysis 
was presented and several patch tests were proposed. In the present work the stiffness matrix 
of the triangular element is equal to the one proposed in [16] and the elastic matrix is 
composed by matrices A and L . The mass matrix of the element is given by: 

* *el T

MT
s dA= ∫M N I N  (23) 

Where N* is the matrix of the shape functions, T is the area of the generic triangular 
element and 2D

3diag{ }M J= ρ ρI . 

5 NUMERICAL EXAMPLES 

A numerical campaign is carried on for evaluating the performances of both discrete and 
micropolar models, the latter adopted for the constitutive functions of the enriched FEM, in 
determining the natural frequencies and the corresponding modal shapes of masonry-like 
panels with different restraint conditions, varying block dimension ratio ε = b/a and varying 
the size of heterogeneity. For the latter purpose, the scale factor r = L/b = H/a is introduced in 
order to perform modal analysis by increasing the number of blocks along both plane 
directions, maintaining fixed panel overall dimensions (L,H) and block dimension ratio. The 
same scale factor was adopted in [14] for evaluating the effects of size of heterogeneity on 
linear elastic analysis of masonry panels. 
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Moreover, another purpose of this campaign consists in evaluating the opportunity of 
adopting a micropolar continuum instead of a traditional Cauchy continuum for determining 
in-plane natural frequencies and modal shapes of masonry-like panels. In order to validate the 
proposed models (discrete and micropolar continuum) the work of Brasile and Casciaro [10] 
is taken as benchmark solution for first; furthermore, a heterogeneous FEM is adopted in 
order to have reference solutions. The following list resumes the models considered: 

1) Discrete Element Model (DEM); 
2) Micropolar FE model (FEM microp.); 
3) Benchmark solution (Brasile and Casciaro [10]); 
4) Cauchy FE model (FEM Cauchy); 
5) Heterogeneous FE model (FEM Hetero). 
The heterogeneous FEM (5) is represented by a standard 2D FEM where quadrilateral 

elements in plane stress state are used and mortar joints and elastic blocks are distinguished 
by adopting different elastic parameters. In particular, the elastic modulus of the blocks is 
assumed 104 times larger than that of mortar in order to simulate the infinite rigidity of blocks 
with respect to mortar joints. A quite rough mesh refinement (Fig. 4a) is adopted in order to 
avoid a huge number of degrees of freedom involved in the analysis of panels with a large 
number of blocks. Micropolar (2) and Cauchy (4) FE models are defined by subdividing panel 
length and height into nel,1 and nel,2 subdivisions, respectively, and dividing each rectangle by 
its diagonals (Fig. 4b); then 4 nel,1 × nel,2 triangular elements are defined in order to obtain a 
symmetric mesh. 

a     b 

Figure 4: (a) detail of the heterogeneous FEM, (b) detail of micropolar and Cauchy FEMs. 

a    b 

Figure 5: (a) rectangular panel studied by Brasile and Casciaro [10], (b) square panel having r = 6. 

5.1 Rectangular panel 

The masonry panel defined in [10] is considered (Fig. 5a). Modal analysis is performed for 
both free panel and panel with fixed base. Fig. 6 shows the first four eigenpairs of the free 
panel obtained with DEM (first row) and micropolar FEM (second row), whereas Fig. 7 
shows the same results referred to the panel with fixed base. As it is shown in Tab. 1, 
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vibration periods given by DEM -err. (1)- are in very good agreement with benchmark results 
-T (3)-, if the panel is free, whereas differences are larger for the panel with fixed base due to 
the different block boundary conditions adopted by the models (the model in [10] adopts 
boundary conditions along joints, whereas the present DEM has boundary conditions at block 
centres). The micropolar FEM -err (2)- appears to be quite more far from benchmark model 
with respect to the DEM, however differences are acceptable. 

0.043008 [sec.] 0.030713 [sec] 0.026946 [sec.] 0.019587 [sec.]

 
0.039796 [sec] 0.029102 [sec] 0.023742 [sec] 0.017211 [sec]

 

Figure 6: First four eigenparis of a free rectangular panel, DEM (first row), micropolar FEM (second row). 

0.10937 [sec] 0.03667 [sec] 0.022644 [sec] 0.02179 [sec]

 
0.097284 [sec] 0.03254 [sec] 0.020546 [sec] 0.019739 [sec]

 
Figure 7: First four eigenparis of a rectangular panel with fixed base, DEM (first row), micropolar FEM (second 

row). 

Table 1: Vibration periods of the rectangular panel [10], comparison with DEM (1) and micropolar FEM (2). 

 free panel  panel with fixed base 
mode T (3) [sec] err.(1) [%] err.(2) [%]   T (3) [sec] err.(1) [%] err.(2) [%] 

1 0.0425 1.20 -7.47  0.1183 -7.55 -11.05 
2 0.0302 1.70 -5.25  0.0395 -7.16 -11.26 
3 0.0267 0.92 -11.89  0.0230 -1.55 -9.26 
4 0.0192 2.02 -12.14  0.0226 -3.58 -9.41 
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5.2 Square panel – sensitivity to size of heterogeneity 

A square panel made by UNI bricks (b = 250 mm, s = 120 mm, a = 55 mm) with standard 
mortar joint thickness (ev = eh = e = 10 mm) is considered. Mass density assumed for blocks is 
ρ = 1800 kg/m3. The panel is fixed at the base and its dimensions are L = H = 1550 mm. Fig. 
5b shows the case characterized by r = 6 and Fig. 7 shows the first three eigenpairs obtained 
with the DEM. First and second mode shapes represent a flexural deformation, whereas the 
second one is a pure vertical deformation. Figs. 8 show separately the first three vibration 
periods of the panel obtained with different models and increasing r. As expected, results 
obtained with the Cauchy model are not influenced by the scale factor, whereas results given 
by other models converge to those given by the Cauchy one. The behaviour of micropolar 
model converge to that of Cauchy model faster with respect to the DEM if flexural mode 
shapes are considered, whereas the second mode shape, a simple vertical deformation, is not 
influenced by r. The heterogeneous FEM appear to be more rigid than other models due to the 
rough mesh refinement adopted, anyway for this reason, differences are acceptable. 

0.0075984 [sec] 0.0032169 [sec] 0.0028774 [sec]

 

Figure 7: First three eigenparis of a square panel with fixed base and r = 6 modelled by DEM. 
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Figure 8: First three eigenparis of a square panel with fixed base and increasing r. 
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5.3 Square panel – sensitivity to block dimension ratio 

Here the effect of block dimension ratio ε = b/a on modal shapes and vibration periods is 
taken into account by considering the square panel with fixed base, maintaining block height 
a fixed and varying its width b. For instance, the panel in Fig. 5b is characterized by ε = 5 and 
represent a ‘running bond’ texture pattern, whereas a panel with ε = 2 may represent a ‘header 
bond’ texture pattern. Fig. 9a shows the first three vibration periods of the square panel for 
increasing ε obtained with DEM (1), whereas Fig. 9b shows differences of micropolar FEM 
(2) with respect to DEM results. It is clear that periods tend to converge to constant values for 
increasing ε and errors committed by adopting the micropolar FEM decrease for increasing ε, 
except for the second eigenpair, characterized by a vertical deformation that is not well 
approximated by the micropolar model with respect to the other eigenpairs, as it has been seen 
in the previous example. 

a 
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T
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 b 

T1
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Figure 9: First three eigenparis of a square panel with fixed base and increasing ε determined with DEM (a), 
errors of micropolar FEM with respect to DEM (b). 

12 CONCLUSIONS 

- In the present work, an existing DEM has been extended to the field of in-plane 
modal analysis of masonry panels with regular texture, such model turned out to be 
simple and effective if compared with existing results and with an heterogeneous 
FEM. 

- A micropolar model has been taken into account for modelling masonry behaviour, 
such model turned out to be suitable for determining panel vibration periods and 
modal shapes with respect to a traditional Cauchy model especially if size of 
heterogeneity is larger than panel dimensions. More generally, both DEM and 
micropolar FEM converged to Cauchy solutions for increasing number of blocks. 

- Vibration periods and modal shapes have turned out to be slightly influenced by 
block dimension ratio. 

- The modal analysis performed with DEM allowed to define easily the stiffness 
matrix of a panel with regular texture and rigid block hypothesis, further 
developments may regard the extension of the model to out of plane modal analysis 
and nonlinear dynamic analysis. 
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