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Abstract. In the present study, the development of a hybrid, explicit-implicit, second-
order TVD (Total Variation Diminishing) method for hyperbolic conservation laws is
continued. In our previous works the scheme has been proposed for 1D equations, includ-
ing the linear advection, Burgers and Euler equations. In the current study, the hybrid
scheme is generalized for the 2D Euler equations on unstructured grids. The scheme is
of the second order accuracy in space and time for both explicit and implicit modes.
In order to make the scheme TVD, space and time TVD limiters are applied, with the
latter being generalized for unstructured mesh. The nonlinear system of discretized equa-
tions is solved using the Lower-Upper-Symmetric-Gauss-Seidel (LU-SGS) approximate
factorization method for unstructured grids. In order to eliminate the factorization and
linearization errors, internal iterations are introduced at each time step. Local transient
grid adaptation is applied near solution peculiarities, such as shock waves and contact
surfaces. The lower and upper matrices in the LU-SGS scheme are formed via reordering
of grid nodes at each time step. The new hybrid scheme is applied to a number of test
problems chosen to represent the cases with various sources of temporal stiffness. The
numerical results demonstrate the ability of the proposed hybrid scheme to produce the
same accuracy as the purely explicit scheme while reducing the computational time.

1 INTRODUCTION

Explicit schemes are widely used for simulations of unsteady high-speed flows with
shock waves. However, in some shock wave flows the time step of explicit time marching
becomes severely restricted by particular conditions in a relatively small flow area while
the rest of the computational domain admits much higher time steps. There may be
different sources of such temporal stiffness, e.g., small geometrical features; locally high
temperatures and velocities; regions where viscous effects are essential. In this case one
may benefit from a hybrid, explicit-implicit, scheme which would turn into the implicit
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mode in the flow regions causing temporal stiffness while the rest of the flow would be
simulated in the explicit mode. A number of such schemes were proposed in the past,
with, arguably, the most advanced technique being the hybrid scheme by Men’shov and
Nakamura [1]. This scheme (M-N) is of the second order in space but only of the first
order of accuracy in time in the fully implicit and hybrid modes, and does not belong to
the class of TVD (Total Variation Diminishing) schemes. In our previous works [2, 3] we
suggested a new hybridization approach and, inspired by the work [4], introduced a new
TVD time limiter for our hybrid scheme via the application of Harten’s theorem. These
resulted in the hybrid scheme for 1D linear/nonlinear scalar conservation laws, which is
a TVD one, of the second order accuracy both in space and time in all modes and, as a
result, less dissipative than the M-N scheme. Additionally, the hybrid scheme for the 1D
Euler equations has been introduced in [5].

The present paper deals exclusively with the generalization of the hybrid scheme for the
2D Euler equations on adaptive unstructured triangular grids with node-centered control
volumes. In Section 2, the governing equations are given. Section 3 is devoted to their
discretization using the hybrid scheme. The hybridization is achieved by having explicit
and implicit portions of the left and right values for the Riemann problem at each cell
interface. These values are calculated using the spatial and temporal reconstructions of
primitive variables, which are subjected to space and time TVD limiters. The resulting
system of non-linear equations is linearized and then solved by the LU-SGS method
for unstructured grids. Grid reordering is done at each time step during the solution
procedure. Finally, the developed hybrid second-order TVD technique is applied to some
2D demonstrative problems in Section 4 followed by the conclusions (Section 5).

2 GOVERNING EQUATIONS

The Euler equations in conservative form for a control volume Ω bounded by the surface
∂Ω with the normal vector n can be written as follows:

∂

∂t

∫
Ω

UdΩ +

∮
∂Ω

FdS = 0 , (1)

U =


ρ
ρu
ρv
ρE

 , F =


ρV

ρuV + nxp
ρvV + nyp
(ρE + p)V

 , (2)

with V = V ·n. Here, V = (u, v) is the velocity vector, ρ – density, p – pressure, E – the
specific total energy.

3 NUMERICAL DISCRETIZATION

Discretization of the above equations on an unstructured triangular grid with non-
overlapping control volumes around each node (see Fig. 1) results in the following discrete
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equations for each node i:

Un+1
i = Un

i −
∆t

Ωi

∑
j

Fω
σSσ , (3)

where j are the neighbors of node i; Ωi is the volume of cell i. Here, σ denotes the values
at the control volume face between nodes i and j while Sσ is the absolute value of the
respective area vector.

Figure 1: Schematic representation of a control volume.

In Eq. (3) Fω
σ is evaluated using the Riemann problem solution at each face with the

following left and right values for primitive variables W = (ρ, u, v, p):

Wω
L = ωi

[
1
2
(Wn

i +W
n+1/2
i ) + 1

2
(∇W)ni ·

−→
ij

]
+

+(1− ωi)

[
Wn+1

i + 1
2
(∇W)n+1

i · −→ij − 1−ωi

2
(∆tW)n+1

i

]
,

(4)

Wω
R = ωj

[
1
2
(Wn

j +W
n+1/2
j )− 1

2
(∇W)nj ·

−→
ij

]
+

+(1− ωj)

[
Wn+1

j − 1
2
(∇W)n+1

j · −→ij − 1−ωj

2
(∆tW)n+1

j

]
,

(5)

where ωi is the hybridization coefficient. It defines the portion of the explicit mode at
each grid node (ω = 1 for fully explicit mode and ω = 0 for fully implicit mode). Values of

W
n+1/2
i for the explicit portion of the scheme come from the predictor step which employs

no Riemann solver and can be written as follows:

U
n+1/2
i = Un

i −
∆t

Ωi

∑
j

F(Win
σ )Sσ , (6)

where Win
σ is the primitive variables at the inner side of the control volume surface:

Win
σ = Wn

i +
1

2
(∇W)ni ·

−→
ij . (7)
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3.1 The hybridization coefficient

The hybridization coefficient ωi could be determined as follows. At first, a part (sub-
domain) of the whole computation domain D, which does not include the source of stiff-
ness, is identified as Dexp. The time step for the hybrid scheme is chosen to be the
maximum allowable time step, ∆t, in this sub-domain for the fully explicit scheme, which
can be obtained from the CFL condition:

∆t = min
i∈Dexp

ν̂
∆Li

|Vi|+ ci
, (8)

where ν̂ < 1; ∆Li is the characteristic size of the control volume i, and ci is the speed of
sound. The hybridization coefficient ωi for each node may be then assigned as:

ωi = min

{
1,

1

νi

}
, where νi =

(|Vi|+ ci)∆t

∆Li

. (9)

With this choice the scheme is to be in the fully explicit mode in Dexp (ωi = 1 in Dexp).
It can be shown that this choice satisfies the stability condition of the hybrid scheme.

3.2 Space and time TVD limiters

In order to enhance the spatial and temporal accuracy of the scheme, two types of
reconstruction of primitive variables are used in Eqs. (4) and (5). The first one is the lim-
ited spatial linear reconstruction within a control volume with the gradient ∇Wi, which
could be determined, for example, via the minmod limiter based on gradients (∇W)e in
the triangles e sharing node i:(

∂W

∂α

)
i

= minmod
e

[(
∂W

∂α

)
e

]
, α = x, y . (10)

The second one is the limited time reconstruction in the implicit portion of the left and
right face values. Inspired by [4], this time limiter was first introduced for the 1D hybrid
scheme in [3, 5] using Harten’s theorem. Here, it is generalized for the reconstruction of
primitive variables on unstructured grids:

(∆tW)n+1,s
i = max

{
0,min

{
min
j

[
β(Wn+1,s

i −Wn
i ) + (∆tW)n+1,s−1

j

]
,Wn+1,s

i −Wn
i

}}
,

(11)
for non-negative Wn+1,s

i −Wn
i and

(∆tW)n+1,s
i = min

{
0,max

{
max

j

[
β(Wn+1,s

i −Wn
i ) + (∆tW)n+1,s−1

j

]
,Wn+1,s

i −Wn
i

}}
,

(12)
for negative Wn+1,s

i −Wn
i , where

β =
2

νs
i

· 1− ωs
i ν

s
i (2− ωs

i ν
s
i )

(1− ωs
i )

2
. (13)

The iterative nature of the time limiter is to be noted: the index s represents the iteration
number to be introduced in the next subsection.

4



Farhang Norouzi and Evgeny Timofeev

3.3 Solution of the discretized equations

As the first step, the system of nonlinear equations (3) with Eqs. (4) and (5) is to be
linearized. Newton’s linearization of numerical fluxes can be written as follows:

δUs
i +∆Us

i +
∆t

Ωi

∑
j

(Fω,s
σ + δFω,s

σ )Sσ = 0 , (14)

where s is the iteration number, δUs
i = Un+1,s+1

i −Un+1,s
i and ∆Us

i = Un+1,s
i −Un

i .
Introducing the unsteady residual as Rω,s

i = ∆Us
i +

∆t
Ωi

∑
j F

ω,s
σ Sσ one arrives at the

following form:

δUs
i +

∆t

Ωi

∑
j

δFω,s
σ Sσ = −Rω,s

i . (15)

The subsequent linearization and factorization follows the ideas from [1, 6, 7]. Only
the first order fluxes are subjected to linearization and the hybridization coefficient ω
is assumed to be frozen at each iteration and treated as a constant. Moreover, for the
purpose of linearization the fluxes are approximated by the following function:

Fσ = 0.5
[
Fσ(UL) + Fσ(UR)− (rA(UR)UR − rA(UL)UL)

]
, (16)

where rA is the spectral radius of the Jacobian A = ∂F/∂U. Consequently, the flux
increments can be linearized as:

δFω,s
σ = (1− ωi)A

(1)
σ δUs

i + (1− ωj)A
(2)
σ δUs

j , (17)

where

A(1)
σ = 0.5[Aσ(Ui) + rA(Ui)I] and A(2)

σ = 0.5[Aσ(Uj)− rA(Uj)I] , (18)

and I is the identity matrix. Using the linearized fluxes, Eq. (15) can be written as:

δUs
i +

∆t

Ωi

∑
j

[
(1− ωi)A

(1)
σ δUs

i + (1− ωj)A
(2)
σ δUs

j

]
Sσ = −Rω,s

i . (19)

After some rearrangements to form upper and lower matrices for subsequent LU (Lower-
Upper) factorization it reads as follows:[

I+ ∆t
Ωi

∑
j

(1− ωi)A
(1)
σ Sσ

]
δUs

i +
∆t
Ωi

∑
j<i

(1− ωj)A
(2)
σ Sσ · δUs

j+

+∆t
Ωi

∑
j>i

(1− ωj)A
(2)
σ Sσ · δUs

j = −Rs
i .

(20)

To avoid any matrix inversion and reduce computational costs, the combination of
LU approximate factorization and Gauss-Seidel relaxation is applied [6]. The resulting
equations are:[

I+ ∆t
Ωi

∑
j

(1− ωi)A
(1)
σ Sσ

]
δUs,∗

i + ∆t
Ωi

∑
j<i

(1− ωj)A
(2)
σ Sσ · δUs,∗

j = Rs
i (21)
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[
I+ ∆t

Ωi

∑
j

(1− ωi)A
(1)
σ Sσ

]
δUs

i +
∆t
Ωi

∑
j>i

(1− ωj)A
(2)
σ Sσ · δUs

j =

=

[
I+ ∆t

Ωi

∑
j

(1− ωi)A
(1)
σ Sσ

]
δUs,∗

i .
(22)

It is known that for any closed surface ∂Ω the following identity holds ([7]):∫
∂Ω

AσdSσ = 0 . (23)

Therefore we have:

∆t

Ωi

∑
j

(1− ωi)A
(1)
σ Sσ =

1

2

∆t

Ωi

∑
j

(1− ωi)rA(Ui)Sσ . (24)

Substitution of Eq. (18) into Eqs. (21) and (22) and application of the above Eq. (24) re-
sults in the two-step, forward and backward, procedure for finding δUs

i at current iteration
without any matrix inversions:

δUs,∗
i = − 1

1+ 1
2

∆t
Ωi

∑
j
(1−ωi)rA(Us

i )Sσ

[
Rs

i +
1
2
∆t
Ωi

∑
j<i

(1− ωj)[Aσ(U
s
j)− rA(U

s
j)I]Sσ · δUs,∗

i

]
(25)

δUs
i = δUs,∗

i − 1
1+ 1

2
∆t
Ωi

∑
j
(1−ωi)rA(Us

i )Sσ
× 1

2
∆t
Ωi

∑
j>i

(1− ωj)[Aσ(U
s
j)− rA(U

s
j)I]Sσ · δUs

i .

(26)
Index s denotes the known values from the previous iteration. The values at iteration
s+ 1 are then found from Un+1,s+1

i = Un+1,s
i + δUs

i .

3.4 Grid adaptation

Local grid adaptation in the form of the classical h-refinement [8] is performed near
localized flow field features (shock and expansion wave fronts, contact discontinuities,
vortices etc.) as dictated by the refinement/coarsening sensor based on second order
differences of density [9]:

Ei = max
e

(
|(∇ρ)e − (∇ρ)i|

|(∇ρ)e|+ |(∇ρ)i|+ ϵ|ρi|(∆Li)−1

)
, (27)

where, as above, index e denotes triangles sharing node i and ∆Li is the characteristic
size of the control volume i. The quantity ϵ represents a noise filter coefficient; (∇ρ)i is
the weighted average gradient of density in the control volume i based on gradients in
the triangles sharing node i. Refinement and coarsening in the vicinity of each node are
governed by the corresponding values of Ei and the prescribed refinement and coarsening
thresholds Tr and Tc. If Ei > Tr the node i is marked for refinement of neighbouring
triangles while if Ei < Tc the node may be removed.
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3.5 Unstructured grid reordering

As mentioned before, the LU-SGS scheme is used for time integration, which is ma-
trix inversion free and storage-efficient. The definition of the lower and upper matrices
for unstructured grids is not straightforward, and it may affect the convergence rate of
iterations. In the above sections, similarly to [6], forward and backward sweeps are desig-
nated to be in accordance with grid node numbers. However, since nodes of unstructured
grids are, generally, numbered in a random order, node-number-based sweeps may lead to
low iteration convergence rates or even the lack of thereof. Therefore, a grid reordering
method is implemented, similarly to what has been proposed in [10], which groups nodes
into hyperplanes and the forward and backward sweeps are then performed based on the
hyperplane numbers rather than node numbers. This partitioning is done in such a way
that nodes from the same hyperplane are not connected to each other. In other words,
all neighbors of a node are marked with hyperplane numbers different from the one for
that specific node.

4 RESULTS

In this section, the new hybrid scheme is applied to two test problems chosen to rep-
resent some sources of stiffness mentioned in Section 1.

4.1 Blast wave propagation

The first test problem is the simulation of a cylindrical blast wave induced by instan-
taneous energy deposition within a small cylindrical region. The temporal stiffness is
due to the high temperature (and hence, the high speed of sound) core remaining at the
explosion center after the blast wave has been formed and moved away from the center.
The initial state inside the cylindrical energy deposition region of radius 1 corresponds
to a gas at rest with a high pressure p1 = 106 and a high density ρ1 = 100. The gas can
be interpreted as the one originating from denotation of an explosive charge, and, hence,
it is to be called below “detonation gas”. The ambient initial conditions are a quiescent
gas with a low pressure p0 = 10−3 and a low density ρ0 = 1. All the initial values are
non-dimensional. Both the ambient gas and the detonation gas are considered to be ideal
with the constant specific heat ratio γ = 1.4. The choice of initial parameters is made to
allow for the comparison of numerical solutions with the Sedov-Taylor analytical solution
for the cylindrical strong point explosion problem (for the purpose of code validation).

In order to reduce the simulation time, only a sector is modeled with 2391 initial
grid nodes. Three levels of refinement are applied, and the computation proceeds till
t = 300, when the blast wave is close to the outer cylindrical boundary. Instant pressure,
temperature, and hybridization coefficient distributions are shown in Fig. 2a-c. Near
the explosion center the contours of temperature and hybridization coefficient are not
cylindrical due to relatively coarse mesh at the initial high/low pressure interface of small
radius, which induces grid-related disturbances growing in the course of flow development.
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(a) Pressure contours (b) Temperature contours (log scale)

(c) Hybridization coefficient ω

time step number

∆

0 5000 10000 15000
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0.05

0.1

0.15

0.2

0.25

0.3

Explicit
Hybrid

t

(d) Time step comparison

Figure 2: Cylindrical blast wave propagation problem: (a)-(c) Instant pressure, temper-
ature, and hybridization coefficient distributions for a time moment when the blast wave
is approaching the outer boundary of the computational domain; (d) Time step history
for the hybrid and fully explicit schemes.

As seen in Fig. 2b,d, the high-temperature core near the explosion center at (100,100)
would cause very small time steps as compared to the rest of the domain for a fixed
Courant number. In view of that, the sub-domain Dexp is defined to correspond to the
ambient gas, so that not to include the high-temperature core. To track the detona-
tion/ambient gas boundary, a mixture of two gases, the detonation and ambient ones, is
considered (even though physically these gases are the same in the present test computa-
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LOG(time)
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(p
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101

102

103

Sedov
Hybrid scheme

Figure 3: Cylindrical blast wave propagation problem: comparison of the pressure history
behind the cylindrical shock front for the new hybrid explicit-implicit method with the
analytical solution by Sedov [11].

tions), and one additional advection equation for the mass fraction of the detonation gas
is included into the governing equations.

The explicit sub-domain Dexp consists of grid nodes where the mass fraction of the
detonation gas is lower than a certain threshold. This sub-domain includes the blast wave
and represents most of the computational domain. The time step value is based on the
solution within the explicit sub-domain Dexp and ν̂ = 0.5, see Eq. (8). Since the source of
stiffness (the high-temperature/high speed of sound region) is outside of this sub-domain,
the resulting time step is larger than the one which would be obtained from the CFL
condition applied to the whole computational domain (which must be done if the fully
explicit mode is to be used).

In the explicit sub-domain the scheme is then in its explicit mode (see ω ∼ 1 region
in Fig. 2c). On the other hand, it is predominantly in the implicit mode closer to the
explosion center where the Courant numbers are higher due to high temperatures. This
results in almost 5 times shorter CPU time as compared to the same simulation done with
the fully explicit method and ν̂ = 0.5 in the whole domain.

Comparison between the time step values of the hybrid and fully explicit methods at
each time step is presented in Fig. 2d. Both simulations are done till the same final time
moment mentioned above. It is seen that the time steps of the explicit method are much
smaller than those of the hybrid one; thus, the explicit scheme needs more time steps to
reach the same time moment, which leads to higher CPU time.

To compare the results of the hybrid scheme and the analytical solution for the cylin-
drical strong point explosion [11], the history of pressure values behind the blast wave
front is depicted in logarithmic scale in Fig. 3. It is seen that the results of the hybrid
scheme match the analytical solution very well.
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4.2 Shock wave diffraction

The second test problem is the shock wave diffraction over a 90◦ corner. Shock wave
diffraction at a sharp edge is of frequent occurrence in compressible shocked flows. Fur-
thermore, this problem has been widely used for validation of numerical schemes. In
this problem the potential source of stiffness is related to large magnitudes of velocity
downstream from the sharp corner, which may reduce the time step values of explicit
schemes. The effect of high velocities in the expansion fan is partially compensated by
the decrease in temperature (and, hence, the speed of sound) but it may still be essential.
Furthermore, it is to be noted that some shock-capturing schemes based on the mass,
momentum and total energy conservation laws produce abnormally high velocities in the
immediate vicinity of the corner (a few cells downstream of it along and near the wall),
where the centered expansion fan cannot be resolved regardless of grid cell size.

In the present computations the incident shock Mach number is chosen to be 10 in
order to induce larger velocities around the corner and make their effect pronounced as
much as possible. The initial shock location is at x = −10 while the corner is located
at (0, 0). In front of the shock, the gas is at rest with the non-dimensional pressure and
density equal to unity (ρ0 = 1 and p0 = 1). The specific heat ratio is γ = 1.4. The
background grid contains 6385 nodes. Three levels of grid refinement are used.

Shock diffraction over a corner leads to the formation of the contact surface separating
the gas which has passed through the diffracted shock and the one which flows around the
corner. This contact surface can conveniently serve as the boundary of the explicit sub-
domain Dexp, which would not then include the region with high velocities downstream
from the corner. To track the contact surface, similar to the previous test problem, the
approach with a two-species mixture (with both species being the same gas) and one
additional advection equation is used.

The computation is carried out till t = 10. Instant pressure, velocity and hybridization
coefficient contours of the flow field at that time moment are presented in Fig. 4. It is
seen that similar to the previous test problem, most of the domain is computed in the
explicit mode (ω = 1) based on the Courant number ν̂ = 0.7, except the area near the
corner where a high velocity region exists. As already mentioned above, within the most
part of the centered expansion fan high velocities (see Fig. 4b) are compensated by the
decrease in temperature and hence do not lead to significant decrease of the local time
step, and, hence, the hybridization coefficient, throughout the whole expansion fan (see
Fig. 4c). However, according to Fig. 4c, there is a small region in the immediate vicinity
of the corner where the hybridization coefficient is significantly less than 1. This region
is calculated with the implicit mode of the scheme with Courant numbers higher than 1.

As a result, time steps of the hybrid scheme are larger than those for the explicit method
(see Fig. 4d where time step values are shown), which makes the simulation faster. In
this case, the CPU time of the hybrid scheme is almost two times shorter than that for
the fully explicit scheme with ν̂ = 0.7 in the whole domain.
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(a) Pressure contours (b) Velocity contours

(c) Hybridization coefficient ω

time step number
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0.008 Explicit
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t

(d) Time step comparison

Figure 4: Shock wave diffraction over a 90◦ corner: (a)-(c) Instant pressure, velocity,
and hybridization coefficient distributions; (d) Time step history for the hybrid and fully
explicit schemes.

5 CONCLUSIONS

The results show the ability of the proposed hybrid scheme to handle problems with
temporal stiffness. In all problems, the proposed hybrid scheme results in the solutions of
the same accuracy as the ones produced by its fully explicit mode (the MUSCL-Hancock
scheme) while the computational time is reduced. Due to calculations with higher Courant
numbers in some regions of the computational domain, hybrid scheme computations are
faster than simulations of the same problem with the fully explicit scheme.
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[8] R. Löhner. An adaptive finite element scheme for transient problems in CFD. Comp.
Meth. Appl. Mech. Eng. (1987) 61:323-338.

[9] Saito, T., Voinovich, P., Timofeev, E., and Takayama, K. Development and ap-
plication of high-resolution adaptive numerical techniques in Shock Wave Research
Center. In:”Godunov Methods: Theory and Applications”, Edited Review, E.F. Toro
(Ed.), Kluwer Academic/Plenum Publishers, New York, USA, 2001, pp. 763–784.

[10] Sharov, D. and Nakahashi, K. Reordering of hybrid unstructured grids for lower-
upper symmetric Gauss-Seidel computations. AIAA J. (1998) 36(3):484–486.

[11] Sedov, L.I. Similarity and dimensional methods in mechanics. Academic Press, New
York, NY, (1959).

12


