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Abstract. The Variational Asymptotic Method (VAM) is used for modeling a coupled
non-linear electromechanical problem finding applications in aircrafts and Micro Aerial
Vehicle (MAV) development. VAM coupled with geometrically exact kinematics forms
a powerful tool for analyzing a complex nonlinear phenomena as shown previously by
many in the literature [3 - 7] for various challenging problems like modeling of an initially
twisted helicopter rotor blades, matrix crack propagation in a composite, modeling of
hyper elastic plates and various multi-physics problems. The problem consists of design
and analysis of a piezocomposite laminate applied with electrical voltage(s) which can
induce direct and planar distributed shear stresses and strains in the structure. The de-
formations are large and conventional beam theories are inappropriate for the analysis.
The behavior of an elastic body is completely understood by its energy. This energy must
be integrated over the cross-sectional area to obtain the 1-D behavior as is typical in a
beam analysis. VAM can be used e�ciently to approximate 3-D strain energy as closely
as possible. To perform this simplification, VAM makes use of thickness to width, width
to length, width multiplied by initial twist and strain as small parameters embedded in
the problem definition and provides a way to approach the exact solution asymptotically.
In this work, above mentioned electromechanical problem is modeled using VAM which
breaks down the 3-D elasticity problem into two parts, namely a 2-D non-linear cross-
sectional analysis and a 1-D non-linear analysis, along the reference curve. The recovery
relations obtained as a by-product in the cross-sectional analysis earlier are used to obtain
3-D stresses, displacements and velocity contours. The piezo-composite laminate which is
chosen for an initial phase of computational modeling is made up of commercially avail-
able Macro Fiber Composites (MFCs) stacked together in an arbitrary lay-up and applied
with electrical voltages for actuation. The expressions of sectional forces and moments
as obtained from cross-sectional analysis in closed-form show the electro-mechanical cou-
pling and relative contribution of electric field in individual layers of the piezo-composite
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laminate. The spatial and temporal constitutive law as obtained from the cross-sectional
analysis are substituted into 1-D fully intrinsic, geometrically exact equilibrium equations
of motion and 1-D intrinsic kinematical equations to solve for all 1-D generalized variables
as function of time and an along the reference curve co-ordinate, x1.

1 INTRODUCTION

After the invention of MFC by NASA in 1996 and commercialization by Smart Material
Corp. in 2002, it has evolved a lot in terms of design, properties and e↵ectiveness. MFC
is popular for its great flexibility, surface conformability, excellent actuation properties
(d33 = 460 pc/N) and are quoted as being capable of a maximum strain of 1800 µ✏. It
can be used both as an actuator as well as a sensor. As an actuator it finds applications
in numerous fields ranging from flapping wing or morphing wing MAVs, UAVs, aircraft
control surface, vibration control of helicopter rotor blades or aircraft rudder, satellite
booms and so on. And as a sensor it can be used for energy harvesting, structural
health monitoring (SHM) etc. In the present study, MFC is being modeled only as
an actuator. M8528-P1 and M8528-F1 are chosen as constituent lamina in the piezo-
composite actuator.

Keeping in mind the actuation authority provided by MFCs, it is di�cult to analyze
such a complex coupled nonlinear behavior using conventional ad-hoc beam theories or
other engineering beam theories which are based on some truncation schemes or small
strain approximations. Hence VAM is used to model it in an e�cient way. From the
cross-sectional analysis, VAM gives closed-form solutions for simple geometries and hence
certain parametric studies are carried out which make significant contribution in the
design process. For the simplest case, stacked layers are made up of MFC in [00/450/00]
configuration, a linear 3-D electromechanical constitutive law is incorporated and the
theoretical formulation is constructed considering the piezo-composite beam as a thin
strip S-class beam.

Smart material Co. [1] provides following structural and piezoelectric properties of
MFC

E11 = 30.336GPa E22 = 15.857GPa G12 = 5.515GPa ⌫12 = 0.31 ⌫21 = 0.16

d15 = d24 = 400pCN�1 d31 = �170pCN�1

The sti↵ness matrix, [C]6⇥6, for an orthotropic material in terms of the engineering con-
stants, piezoelectric strain coe�cient matrix, [d]6⇥3, and piezoelectric stress constants
e = [C] · [d] can be obtained from the above data relevant to MFC.

2 THEORETICAL FORMULATION

The beam kinematics is first drawn based on Jaumann Biot Cauchy’s strain tensor
[2] to get the expressions for the 3-D strains in terms of the 1-D generalized strains and
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Figure 1: Schematic of beam deformation

warping measures. Next, the 2-D cross-sectional analysis is performed by minimising the
electromechanical energy of the system to obtain recovery relations, warping expressions
and 1-D constitutive law. The results of 2-D analysis are input to the geometrically-
exact 1-D equilibrium equations, which are again obtained by an asymptotic approach as
outlined in [2], and then solved following an appropriate discretization scheme in space
and time for 1-D variables in terms of length coordinate.

2.1 2-D Analysis

Consider an initially twisted cantilever beam with an initial twist given by k1(x1) in its
undeformed state as shown in Fig 2.1, where x1 is the running axial coordinate along the
length of the beam. Let the wavelength of deformation be denoted by l. The width and
thickness of the strip are denoted by b and h, respectively. As mentioned earlier also, the
geometric small parameters are �

h

= h/b, �
b

= b/l and �
t

= bk1. The Cartesian coordinate
measures x

i

are directed along the length, width and thickness of the strip for i = 1, 2, 3
respectively, parallel to corresponding unit vectors bi. Here and hereafter throughout the
text, unless otherwise specified, Greek indices assume values 1 and 2, while Latin indices
assume values 1, 2, and 3. Repeated indices are summed over their range unless indicated
otherwise. Note that all bi are functions of x1. The domain of the strip is such that
0  x1  L, �b/2  x2  b/2 and �h/2  x3  h/2.
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2.1.1 Undeformed Beam Geometry

In the first step, we choose the reference curve r(x1) of the beam along its length
which is a locus of uniquely identifiable cross-sectional material points, for e.g. a locus
of centroids of the cross-section or a locus of the left or right corner points of the cross-
section. In the present work, we have chosen our reference curve to be a locus of centroids
of the cross-section. At each point along r, define a frame b in which are fixed mutually
orthogonal dextral set of unit vectors bi such that b2(x1) and b3(x1) are tangent to the
coordinate curves x2 and x3 respectively and b1 is tangent to r. The position vector from
a point fixed in an inertial reference frame a to a generic point on the middle surface of
the strip is r0(x1, x2) = x1b1 + x2b2(x1). The position vector of an arbitrary material
point in the strip is then

r̂(x1, x2, x3) = r0 + x3b3(x1) = x
i

bi (1)

Assuming there is no initial curvature in the beam, i.e. k2 = k3 = 0, derivatives of bi can
be expressed as follows:

b
0

i = k
j

bj ⇥ bi (2)

Next, co-variant and contra-variant basis vectors for the undeformed beam geometry are
obtained which are required for defining the Deformation Gradient Tensor (DGT)

2.1.2 Deformed Beam Geometry

After the application of loads, intially planar reference cross-section undergoes a rigid
body translation and rotation as well as a warping displacement and hence the undeformed
geometry r assumes a di↵erent configuration R with an arc-length parameter along the
new reference curve denoted by s. At each point along R, let us introduce an orthogonal,
dextral triad Bi. Di↵erent ways of introducing Bi makes it possible to express the one
dimensional constitutive law obtained after cross-sectional energy minimization in the
form of a classical theory where there are no generalized one dimensional shear strains
(2�12 and 2�13) or Timoshenko theory which does incorporate the e↵ect of such transverse
shear strains. Note that irrespective of whatever representation we choose for Bi the
overall analysis neither introduces any additional approximation nor results in the loss of
any information because as we shall see in the subsequent development, warping takes
care of the e↵ect of transverse shear strains in case it doesn’t explicitly appear in the form
of generalized one dimensional shear strains. In the present work, we develop a theory of
the classical form and assume B1 to be tangent to R hence transverse shear strains (2�12
and 2�13) would appear as a part of the warping fields.

The rotation of deformed state w.r.t. the undeformed state from bi to Bi is accom-
plished by pre-dot multiplication with an orthogonal tensor that we call the global rotation
tensor CBb:
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Bi = CBb.bi = CBb

ij

bj (3)

The specialized one-dimensional generalised strains also referred to as the generalised
strains of classical theory can be expressed as:

✏̄ =

8
>><

>>:

�11

1

2

3

9
>>=

>>;
(4)

Next, we define the position vector of a material point in the deformed beam as follows:

R̂(x1, x2, x3) = x1b1 + u
i

bi + x2B2(x1) + x3B3(x1) + w
i

(x1, x2, x3)Bi(x1) (5)

where, u
i

(x1) are the translational displacements of the material points lying on the
reference curve and w

i

(x1, x2, x3) represent two inplane and one out of plane warping
components which can be further broken down as follows:

w
↵

(x1, x2, x3) = w
↵

(x1, x2) + x3�↵

(x1, x2) +�
↵

(x1, x2, x3) (6)

w3(x1, x2, x3) = w3(x1, x2) +�3(x1, x2, x3) (7)

Here, we have introduced a total of 14 variables namely; u
i

, w
i

, �
i

, �
↵

and Bi; while an
accurate description of the deformed configuration requires only three variables. Hence
we constrain above unknown variables in the form of 11 constraining equations. There
can be many choices of such constraints but it is important that those constraints render
the displacement field unique. Two out of 11 constraints are implicitly obtained through
the formulation of VAM, since we have �

0
12 t u

0
2 and �

0
13 t u

0
3. Remaining constraints are

listed below:

h/2Z

�h/2

�
i

(x1, x2, x3)dx3 = 0

h/2Z

�h/2

�
↵,3(x1, x2, x3)dx3 = 0

< w
i

>= 0 < w3,2 >=< �2 > (8)

where the notation < • >=
R

b/2

�b/2(•)dx2 and (•)
i,j

= d

dxj
(•)

i

2.1.3 Three Dimensional Strains

Next, the covariant basis vectors Gi for the deformed geometry are determined by
di↵erentiating R̂(x1,x2,x3) w.r.t. x

i

. Now we can evaluate deformation gradient tensor
� = Gigi and arrange the components of � in mixed bases into a matrix �.
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Evaluating the deformation gradient tensor in this way, we can find out the three
dimensional strain components �

ij

corresponding to the Jaumann-Biot-Cauchy strain
tensor resolved along purely bi bases while using a moderate local rotation (�) theory
appropriate for strip kind of beams.

In the next step, a preliminary order of magnitude analysis is performed to arrive at
leading order terms in the expressions of three dimensional strains so as to carry out
zeroth order and higher order cross-sectional analysis through electromechanical energy
minimization.

2.1.4 Energy Minimization using VAM

Consider the leading order terms in the expressions of three dimensional strains, we
carry out energy minimization w.r.t. warping variables. For simplification, the three
dimensional strains are broken into shell strains ✏

ij

and curvatures ⇢
ij

and the electrome-
chanical energy expression is written below:

U2D =
1

2

8
>>>>>><

>>>>>>:

✏11
✏22
2✏12
⇢11
⇢22
2⇢12

9
>>>>>>=

>>>>>>;

T

0

BBBBBB@


A B
B D

�

8
>>>>>><

>>>>>>:

✏11
✏22
2✏12
⇢11
⇢22
2⇢12

9
>>>>>>=

>>>>>>;

�


N
a

M
a

�

1

CCCCCCA
(9)

where the sti↵ness matrix


A B
B D

�
and actuation forces


N

a

M
a

�
, for zeroth order ap-

proximation are obtained through CLPT (classical laminated plate theory). We consider
a laminate of 3 layers of MFC with fiber orientation [00/450/00]. The expressions of
electric field applied to all the layers along the fiber direction is provided below:

E0 = A0sin(w0t+ �0) + 500 V/m

E1 = A1sin(w1t+ �1) + 500 V/m (10)

E2 = A2sin(w2t+ �2) + 500 V/m

2.2 1-D Analysis & Sample Results

After performing cross-sectional analysis, 1-D constitutive law is obtained. Here, an
expressions of axial sectional force F1 and sectional twisting moment M3 as obtained from
the energy minimization are being provided for the case when �

b

= 0.339, �
h

= 0.0257
and �

t

= 0.177, typical for M8528-P1 MFC laminate:

F1 = 8.05⇥ 105�11 + 415.71 � 6.56⇥ 10�5(E0 + E2)� 1.37⇥ 10�5E1 (11)

M3 = 82.22(3 + 2�
0

12)� 415.79(2�13)
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Next, the above static constitutive law and the generalized momentum-velocity relations
as described by Hodges [2] are substituted into 1-D fully intrinsic equilibrium equations
of motion and 1-D intrinsic kinematical equations as written below:

F
0
+ eKF + f = Ṗ + e⌦P

M
0
+ eKM + (ee1 + e�)F +m = Ḣ + e⌦H + eV P (12)

⌦
0
+ eK⌦ = ̇

V
0
+ eKV + (ee1 + e�)⌦ = �̇

These are then solved in space and time using a piece-wise constant shape functions for
all unknowns on the interior and discrete values of the unknowns at the ends. This time-
marching algorithm is second order accurate along the beam and it satisfies the energy
and momentum conservation laws.
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