
11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)
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Abstract. In this paper, a numerical investigation is carried out on the heterogeneous
and anisotropic mechanical behaviour of AISI H11 martensitic steel with a multi-scale
approach. For this purpose, an elasto-viscoplastic model that considers nonlinear isotropic
and kinematic hardenings is implemented in a finite element code using three stress-
strain formulations: the small strain assumption where rotation is neglected; and two
formulations based on finite strain theory in Eulerian framework which are respectively
defined by the Jaumann-Zaremba and the Olroyd objective rates of Kirchhoff stress. The
parameters of the constitutive equations are identified using macroscopic quasi-static and
cyclic material responses and small strains assumption by the mean of a localization rule.
By using particular Voronöı tessellations, a virtual realistic microstructure, consisting of
laths and grains, is generated considering the specific crystallographic orientations α′/γ
(martensitic/austenitic phases) relation (i.e. Kurdjumov-Sachs relation). Finite element
computations are then performed on this virtual microstructure and exhibit that; besides
laths orientations, morphologies and interactions; the full-field local mechanical fields are
dependant on the used stress-strain formulation.

1



Ahmed Zouaghi, Vincent Velay, Adriana Soveja and Farhad Rézäı-Aria

1 INTRODUCTION

During forming and machining processes, the surface of metallic structures are experi-
encing heterogeneous and anisotropic inelastic deformations which can lead to significant
changes in the microstructure of the material. Since material properties and life assess-
ment of metallic engineering structures are in concerns, it is thus important to better
get insight into the local mechanical response by the mean of a multi-scale approach,
i.e. how a global macroscopic load is accommodated at the local scale of a single grain.
In this direction, several progresses have been made in the development of multi-scale
materials models benefiting from the increase of computational resources [1, 2]. These
approaches have been used to investigate mechanical fields localization prediction as a
function of the parameters of the material microstructure; and show generally a quite sat-
isfactory agreement with experimental observations [3, 4]. Nevertheless, the effects of the
used stress-strain formulation on the local mechanical behaviour have not been investi-
gated. It is well known that, besides small strain assumption, it is possible to use several
finite strain formulations whether in Lagrangian or Eulerian framework for multi-scale
modelling.

The aim of this work is to carry out a numerical investigation on the local hetero-
geneous and anisotropic mechanical response of AISI H11 martensitic steel using three
various stress-strain formulations [5]: the basic small strain assumption where rotation
is neglected; and two formulations based on finite strain theory in Eulerian framework
which are respectively defined by the Jaumann-Zaremba and the Olroyd objective rates of
Kirchhoff stress. For this purpose, the elasto-viscoplastic model of Méric and Cailletaud
[1] is implemented in the finite element code ABAQUS using these formulations. The
parameters of the constitutive equations are identified from experimental quasi-static and
cyclic material reponses data by the mean of a scale transition rule [6]. Finite element
computations are then performed on a virtual realistic microstructure that is generated
by an adapted Voronöı tesselations where the specific crystallographic orientations α′/γ
(martensitic/austenitic phases) relation (i.e. Kurdjumov-Sachs relation) is taken into
account. This implies to get an accurate information about mechanical fields localization.

The paper is organized as follows. In the first part, the constitutive equations and the
associated numerical integration scheme in the context of the investigated stress-strain
formulations are outlined. Next, The identification of the multi-scale model parameters
is given. The virtual microstructure and the associated crystallographic orientations gen-
eration are described in the third part. Finally, the last part is devoted to finite element
computations and the obtained results.

2 MULTI-SCALE MODEL

2.1 Constitutive equations

The multi-scale model of Méric and Cailletaud [1] is formulated in the time dependent
framework of continuum thermodynamics laws. The constitutive equations are written
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at the lath scale and the associated variables are introduced at the slip system level. The
shear strain rate γ̇s on a system s is described by a power function. The accumulated
shear strain is denoted by vs:

γ̇s = sign(τ s − χs) v̇s (1)

v̇s =

〈
| τ s − χs | − rs − τ0

K

〉n
(2)

where K and n are viscosity parameters, τ0 is the initial critical resolved shear stress,
rs and χs are respectively the isoptropic and kinematic hardenings. The operator 〈.〉
denotes the Macaulay function. The kinematic and isotropic hardenings are nonlinear
and are respectively associated to the internal state variables αs and ρs as follows:

χs = c αs (3)

rs = b Q
∑
r

hsrρ
r (4)

α̇s = (sign(τ s − χs)− dαs) v̇s (5)

ρ̇s = (1− bρs) v̇s (6)

where c and d are material parameters for kinematic hardening, Q and b are material
parameters for isotropic hardening. The latter mechanism introduces a hardening matrix
hsr that describes the interaction between the overall slip systems to well capture the
effect of dislocation densities. Knowing that the AISI H11 martensitic steel has a BCC
structure, slip is assumed to occur on two slip systems sets: {110} 〈111〉 and {121} 〈111〉
for respectively easy and pencil glide. The corresponding hardening matrix is thus defined
by eight coefficients hi [7].

The present framework allows to work only on potentially activated slip systems sets
and avoids complexe numerical procedures of time independent schemes. The expression
of the resolved shear stress τ s in (1) and (2) depends on whether finite strain theory is
used or not. In this case (i.e finite strain theory), the resolved shear stress is given by:

τ s = τ
∼

: m
∼
s = detF

∼
σ
∼

: m
∼
s (7)

where τ
∼

and σ
∼

are respectively the Kirchhoff and Cauchy stress tensors, F
∼

is the trans-

formation gradient and m
∼
s is the symmetric part of the Schmid tensor defined as:

m
∼
s =

1

2

(
l
¯

s ⊗ n
¯

s + l
¯

s ⊗ n
¯

s
)

(8)

with l
¯

s and n
¯

s the slip direction and the normal to the slip plane respectively. Otherwise,

in the case of small strain assumption, the expression of the resolved shear stress is
simplified to:

τ s = σ
∼

: m
∼
s (9)
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2.2 Constitutive problem and numerical scheme

The above constitutive equations are implemented in the finite element code ABAQUS
using an implicit numerical integration scheme. The algorithm is based on the gener-
alized trapezoidal rule θ-method [8] where shear strains γs are the primary integrated
variables. The latter are involved in the return-mapping scheme of the elasto-viscoplastic
constitutive probem:

τ̇
∼

= Λ̆ :

(
D
∼

trial −
∑
s

γ̇sm
∼

s

)
(10)

where Λ̆ is the fourth order tensor elastic moduli and D
∼
trial is the trial symmetric rate

part of the velocity gradient L
∼

. Due to the inherent severe nonlinearilty of the problem,

the resolution of the return-mapping equations is initially performed with the rate tan-
gent modulus method developed by Peirce, Asaro and Needlman [9] before applying the
Newton-Raphson iterative scheme.

As mentioned above, three stress-strain formuations are investigated [5]: the small
strain assumption; and two formulations based on finite strain theory in Eulerian frame-
work which are respectively defined by the Jaumann-Zaremba τ̊

∼

J and the Olroyd τ̊
∼

O

objective rates of Kirchhoff stress. The latter one is derived from the Lagrangian frame-
work and is given by:

τ̊
∼

O = τ̇
∼
−L
∼
. τ
∼
− τ
∼
.L
∼
T (11)

while the Jaumann-Zaremba objective rate of Kirchhoff stress is defined as:

τ̊
∼

J = τ̇
∼
−W

∼
. τ
∼
− τ
∼
.W
∼
T (12)

where W
∼

is the asymmetric spin part of L
∼

. By introducing the above definitions in (10)

and taking into account that ABAQUS employs the Jaumann-Zaremba stress rate, the
constitutive elasto-viscoplastic problem is thus respectively for the Olroyd and Jaumann-
Zaremba objective stress rates:

τ̊
∼

J = Λ̆ :
[
D
∼

trial + Λ̆−1 :
(
D
∼

trial. τ
∼

+ τ
∼
.D
∼

trial
)]
−
∑
s

(
Λ̆ : m

∼
s + P

∼
s +Q

∼

s

)
γ̇s (13)

τ̊
∼

J = Λ̆ : D
∼

trial −
∑
s

(
Λ̆ : m

∼
s +Q

∼

s

)
γ̇s (14)

where P
∼
s and Q

∼

s are respectively given by:

P
∼
s = m

∼
s. τ
∼

+ τ
∼
.m
∼
s (15)
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Q
∼

s = w
∼
s. τ
∼
− τ
∼
.w
∼
s (16)

with w
∼
s the asymmetric part of the schmid tensor:

w
∼
s =

1

2

(
l
¯

s ⊗ n
¯

s − l
¯

s ⊗ n
¯

s
)

(17)

When the small strain assumption is used, the elasto-viscoplastic constitutive problem
takes the simplified form:

σ̇
∼

= Λ̆ :

(
D
∼

trial −
∑
s

γ̇sm
∼

s

)
(18)

Besides the constitutive problem, other thermodynamical variables expressions involved
in the return-mapping scheme depend on stress-strain formulations. This is the case for
the resolved shear stress (7) which time derivative relies on these formulations. This would
have consequences on the local mehcanical behaviour that are invetigated in section 5.

3 MATERIAL PARAMETERS IDENTIFICATION

The parameters identification is performed using experimental quasi-static and a strain
controlled (∆ε/2 = 0.8%) cyclic material responses. The procedure consists to solve the
inverse problem using small strain assumption and the β-rule scale transition model [6].
The latter is based on the classical approach deriving from the problem of an inclusion
i in an infinite medium where phases are characterized by classes of crystallographic
orientations.

σ
∼
i = Σ

∼
+ 2µ (1− β)

(
B
∼
− β
∼

i

)
(19)

β =
2 (4− 5ν)

15 (1− ν)
(20)

B
∼

=
∑
i

fi β
∼

i (21)

β̇
∼

i
= ε̇
∼
p,i −D εp,ieq β

∼

i (22)

where σ
∼
i and Σ

∼
are respectively the inclusion and macroscopic stress tensors, µ is the

macroscopic shear modulus and ν is the Poisson’s ratio. The model introduces a macro-
scopic B

∼
and an inclusion β

∼

i accomodation tensors. fi is the inclusion volume fraction

and D is the scale transition parameter. The equivalent Von Mises plastic strain of an
inclusion is denoted by εp,ieq .

The identified parameters are given in Table 1. The numerical model shows a satisfac-
tory agreement with both expermental quasi-static and cyclic material responses (Figure
1). Note that the negative value of the isotropic hardening parameter Q reflects the cyclic
softening behaviour of the AISI H11 martensitic steel.
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Table 1: Identified material parameters

Elasticity Flow rule Isotropic hardening Kinematic hardening
E (GPa) ν τ0 (MPa) n K (MPa.s−n) Q (MPa) b c d (MPa)

208 0.3 372 15 4 -10 1.05 4.95 105 1700
Interaction matrix Scale transition

h1 h2 h3 h4 h5 h6 h7 h8 D
1.1 0.7 0.9 0.9 1.0 1.2 1.3 0.7 15

Figure 1: Material parameters identification (a) quasi-static uniaxial material response (b) cyclic mate-
rial response

4 VIRTUAL MICROSTRUCTURE GENERATION

4.1 Martensitic structural characteristics

In order to investigated the full-field local mehanical behaviour, a virtual realistic mi-
crostructure of the AISI H11 has to be generated. The main martensitic microstructural
charachteristics; i.e orientation and morphology; need to be accurately represented, since
they have a significant role in understanding and predicting mechanical behaviour. As
experimentaly outlined by sevral authors [10], product martensitic phase is related to
the global coordinates through a former austenite grain orientation and variant orienta-
tions. The Kurdjumov-Sachs (KS) or Nishiyama-Wassermann (NW) α′/γ orientations
relations are commonly used for lath martensitic steels; they are respectively defined as
(111)γ // (011)α′ , [1̄01]γ // [1̄1̄1]α′ and (111)γ // (011)α′ , [1̄1̄2]γ // [01̄1]α′ . The other typical
charachteristic consists in the complex structure morphology of laths. The experimental
SEM and EBSD charachterization perfomed by Morito et al. [10] shows that martensitic
laths sharing the same habit plane; i.e morphological parallel; are collected in packets
which are the ’building’ components of the former austenitic grain. The authors define
also a block as a small group of laths with low angle misorientation which could be present
in some cases.
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Figure 2: Virtual microstructure generation by Voronöı tesselations (a) martensitic potential packets
(b) martensitic laths

4.2 Computational methodology

In the present investigation, Voronöı cells tesselations method is used to generate the
virtual AISI H11 martensitic steel. The computational methodology consists first to per-
form ordinary Voronöı tesselations in a spatial domain of 150µm× 50µm× 150µm (Figure
2). The generated cells represent the potential sites of the martensitic packets (Figure
2(a)). From these tesselations, the former austenitic grains are defined as collections
of groups of neighbors potential packets. Starting from these sites centers, randomely
oriented segments are then generated where additional nucleation points are placed and
second Voronöı tesselations are performed from these points. 1,034 polyhedra are gener-
ated and represent the martensitic laths which are the ’building’ cells of the AISI H11
steel (Figure 2(b)). This computational methodology is consistent since it clearly high-
lights the morphological chacteristic of a martensitic microstructure from the collected
parallel laths in packets to former austenitic grains. The second tesselations are phys-
ically analogous to martensitic transformation process where packets can grow through
former austenitic grains boundaries. Furthermore, the present methodology avoids convex
martensitic packets and former grains.

As an assumption, the Kurdjumov-Sachs (KS) orientations relation is adopted in the
present investigation. The twenty four corresponding variants (Figure 3 (a)) are assigned
to each austenitic former grain where each packet contains six variants sharing the same
habit plane. A random isotropic orientations distribution is given to the former austenitic
grains (Figure 3 (b)). In this manner, the product martensitic laths orientations distri-
bution is isotropic (Figure 3 (c)).

5 FINITE ELEMENT COMPUTATIONS

5.1 Meshing and boundary conditions

Uniaxial quasi-static material response is investigated in the present work. Kinematic
uniform boundary conditions type with a macroscopic strain of 8% are applied to the
virtual microtructure in such a way that the microstructure is assumed to be placed at the
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Figure 3: (100) pole figures (a) Kurdjumov-Sachs (KS) orientation relations (b) former austenitic grains
(c) martensitic laths

Figure 4: Virtual microstructure meshing and boundary conditions

surface of the specimen (Figure 4). A free-meshing technique is used to the above Voronöı
tesselations [11]. The domain is discretized by about 85,000 second order tetrahedral finite
elements (Figure 4).

5.2 Results

The finite element computations emphasize the heterogeneous and anisotropic nature
of the local mechanical fields. As espected, the Von Mises stress concentrations fields are
found at packets and laths boundaries (Figure 5). These localization fields are associated
to preferential important plastic strain concentrations. However, the used stress-strain
formulation shows effects on these concentration fields. Three localization regions cor-
responding to potential preferential paths in the virtual microstructure are invetigated.

The first region is highly solicited in the case of small strain assumption. The corre-
sponding Von Mises equivalent plastic strain fields localization is quite important and
homogeneous (Figure 6 (a)). The Von Mises stress fields are concentrated in packets and
laths boudaries as mentioned above but they are more important than the neighboring
areas (Figure 5 (a)). When the Olroyd objective stress rate is used, the first region is
less solicited and the mechanical fields are more spread over the domain. The second
region illustrates a higher concentration of the Von Mises equivalent plastic strain (Figure

8



Ahmed Zouaghi, Vincent Velay, Adriana Soveja and Farhad Rézäı-Aria

Figure 5: Von Mises equivalent stress contour maps (a) small strain assumption (b) Jaumann-Zaremba
objective stress rate (c) Olroyd objective stress rate

Figure 6: Von Mises equivalent plastic strain contour maps (a) small strain assumption (b) Jaumann-
Zaremba objective stress rate (c) Olroyd objective stress rate

6 (c)) and corresponding stress (Figure 5 (c)) than the case of small strain assumption.
However, in the case of Jaumann-Zaremba objective stress rate, the solicitaion of the first
region is almost very low. The investigated domain shows a more homogeneous mechan-
ical fields than the above cases with a strong concentration in the second and the third
regions (Figure 6 (b)).

Figure 7 illustrates the contour maps of the number of activated slip systems. The
distribution of activated slip systems is almost relevant with the one of the Von Mises
equivalent plastic strain and corresponding stress. These contour maps reflect that the
used stress-strain has an effect on the activation of a given slip system and thus on local
mechanical fields. Furthermore, the obtained free surface profile depends also on the used
stress-strain formulation. Figure 8 illustrates the normal strain contour maps at the free
surface. It clearly emphasizes the difference between strain fields and the corresponding
surface profile.

6 CONCLUSIONS

In this investigation, a numerical investigation was carried out on the heterogeneous
and anisotropic mechanical behaviour of AISI H11 martensitic steel with a multi-scale
approach. The elasto-viscoplastic model of Méric and Cailletaud [1] was implemented
in the finite element code ABAQUS using three stress-strain formulations [5]: the small
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Figure 7: Number of activated slip systems contour maps (a) small strain assumption (b) Jaumann-
Zaremba objective stress rate (c) Olroyd objective stress rate

Figure 8: Normal strain contour maps at free surface (a) small strain assumption (b) Jaumann-Zaremba
objective stress rate (c) Olroyd objective stress rate

strain assumption and two formulations based on finite strain theory which are respec-
tively defined by the Jaumann-Zaremba and the Olroyd objective rates of Kirchhoff stress.
The parameters of the model were identified using a mean field scale transition rule [6].
The local mechanical fields were investigated on a virtual microstructure generated by
adapted Voronöı tesselations. The numerical investigation emphsizes the heterogeneous
and anisotropic charachter of local mechanical fields. The results show that the stress-
strain formulation has an impact on the localization of mechanical fields in such a way
that preferential concentration paths of equivalent plastic strain and stress are quite dif-
ferent. So that, a particular attention should be paid to the used stress-strain formulation
when mechanical fields localization is in concern.
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