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Abstract. Recently, the advance in analysis and development of composite laminate structures
has considerably influenced the applicability of composite materials in aeronautical and aircraft
industry. Therefore, considering the mathematical models and developing of numerical algo-
rithms for investigation of the interface fracture problems in such structures seems to be crucial.
The interface as a contact boundary zone of a layered structure has been modeled as an in-
finitesimally thin cohesive layer which can be partially or completely damaged. The numerical
implementation considers the cohesive-type contact which includes nonlinear phenomenon of
friction and also elasto-viscosity. A mathematical model for analysis of delamination problems
has been developed and implemented into the program MATLAB by means of the Symmetric
Galerkin Boundary Element Method. The approach enables to exploit an energetic formulation,
which governs the process of interface rupture.

1 INTRODUCTION

Numerical solution of contact problems with friction may be very challenging. There exist
several approaches for the solution of contact problems by Boundary Element Method (BEM),
see e.g. [5] and references therein. The present work tries to enhance the energetic model of
interface debonding proposed in [6] in order to cover also the frictional contact between the
debonded parts of a specimen or structure. In the present work, the frictional law is regularized
to cope with the energetic character of the model, see [4]. The regularization is proposed so that
convex quadratic energy functionals are obtained and algorithms of quadratic programming can
successfully be applied. This includes, first, replacing of the standard Signorini contact condi-
tions by normal compliance contact condition replacement, which allows a small overlapping
of solids in contact, and, second, making the bulk domains visco-elastic, although the param-
eters characterizing the viscous response of the structure are small. In the following sections
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the proposed model is described, its numerical solution is outlined and an example is solved to
assess the applicability of the approach to contact problems.

2 CONTACT MODEL

For the sake of simplicity, only two-dimensional contact problems between two solids, Ω η

(η = A,B), will be considered in the present work. The standard Signorini condition of unilat-
eral contact tn[u]n = 0, tn≤0, [u]n ≥ 0 in the contact zone Γc is replaced by the normal com-
pliance penalization condition tn=kg[u]−n , [u]−n denotes the negative part of the relative normal
displacement. This penalization can also be explained by presence of a very thin layer of the
normal stiffness kg�0 which is compressed in contact and stress-free out of contact. Here, the
relative normal displacement [u]n = (uB−uA)·nA is defined at the contact zone. Similarly, the
relative tangential displacement [u]s can be also defined, as shown in Figure 1. Also, t denotes
the traction vector and tn its normal component.

Figure 1: A model – contact of two subdomains.

The solution of the contact problem is based on the evolution of energies during the loading
process: the elastic energy stored in the bulks and the energy dissipated due to friction and
(possibly a very small amount) due to viscosity. From a physical point of view, frictional

dissipation in our model is given by the functional R(u; u̇) =
∫

Γc

−µkg[u]−n ·[u̇]sdΓ where the

rate of change of the relative tangential displacement as a function of time [u]t is denoted by [u̇]t .
The model also includes the classical Coulomb friction law |ts|≤µ|tn| with a constant friction
coefficient µ≥0 as a relation between normal and tangential tractions, tn and ts. The viscosity
is considered by a simple linear Kelvin-Voigt model which provides the stress tensor σ by the
relation σ=C:ε(u)+D:ε(u̇) where D expresses the fourth-order tensor of viscosity parameters,
given in the present work as D=τRC, where τR≥ 0 is a relaxation time parameter.

2.1 Cohesive-type contact interface model

Actual trends at engineering practise usually consider an approach which supposes the non-
linear continuous material response of the mechanical stress σ and damage parameter ζ . This
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approach thus refers to a cohesive-type model. The cohesive formulation assumes that the dis-
placement discontinuities δi (i = 1,2,3) across the crack are related to the traction vector t, in
a zone located ahead of the crack tip, usually called cohesive zone. An effective approach to
achieve the continuous non-linear material response is by means of the energy approach formu-
lation of stored energy functional E , see [3].

The failure mechanism starts, when the mechanical stress σ , linearly increasing with u until
the driving force σd is achieved, reaches activations threshold fracture energy Gd . Conse-
quently ζ starts to evolve from one non-linearly until it arrives to zero, see Figure 2. This can

Figure 2: Cohesive contact response of the driving force σd , the damage ζ and the mechanical stress σ .

be obtained by adding a new delamination quadratic term ζ 2 and a stiffness parameter k2 so that
the mechanical stress decays as

σ=
(
k1ζ + k1ζ

2)u. (1)

The main feature of cohesive proposed model is that energy functional is separately quadratic
both in the u and ζ variable. Therefore it enables to apply quadratic programming algorithms
for solving minimization problem, see [1], [4]. Based on the above assumptions, a quasi-static
visco-elastic evolution is governed by the following inclusions:

∂uE (τ,u,ζ )+Ru̇(u; u̇, ζ̇ )+δuF (τ,u) 3 0,
∂ζ E (τ,u,ζ )+R

ζ̇
(u; u̇, ζ̇ ) 3 0, (2)

where the symbol ∂ refers to partial subdifferential relying on the convexity of the energy
functionals, see [2], [3]. It includes the stored energy functional [3], in a form:

E (τ,u,ζ ) =
∫

Ω A

1
2

ε
A:CA:εAdΩ +

∫
Ω B

1
2

ε
B:CB:εBdΩ +∫

Γc

1
2
[ζ (kn1 +ζ kn2)[u]

2
n +ζ (ks1 +ζ ks2)[u]

2
s + kg([u]−n )

2]dΓ , (3)

with the admissible displacements uη = wη(τ) on Γ
η

u and the small strain tensor εη=ε(uη),
the potential energy of external forces (acting only along the boundary in the present work):

F (τ,u) =−
∫

Γ A
t

fA·uAdΓ −
∫

Γ B
t

fB·uBdΓ , (4)
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and the dissipation potential

R(u; u̇, ζ̇ ) =
∫

Γc

−µkg[u]−n ·|[u̇]s|+Gd|ζ̇ |+α|ζ̇ |2dΓ + τR

∫
Ω A

1
2

ε̇
A:CA:ε̇AdΩ+

τR

∫
Ω B

1
2

ε̇
B:CB:ε̇BdΩ , (5)

where ε̇η=ε(u̇η) is the strain rate.

3 COMPUTER IMPLEMENTATION

The numerical procedure devised for solving the above problem considers time and spatial
discretization separately, as usual. The procedure is formulated in terms of the boundary data
only, with the spatial discretization leading to the Symmetric Galerkin BEM (SGBEM) [5],
[6].

3.1 TIME DISCRETIZATION

The time-stepping scheme is defined by a fixed time step size τ0 such that τk=kτ0 for
k=1, . . . T

δ
. The displacement rate is approximated by the finite difference u̇≈uk−uk−1

τ0
, where

uk denotes the solution at the discrete time τk. Similarly the damage parameter can be defined
ζ̇≈ζ k−ζ k−1

τ0
. The differentiation with respect to the displacement rate can be replaced by the

differentiation with respect to u and ζ as well, i.e. ∂u̇R(u; u̇, ζ̇ )≈τ0∂uR(uk−1; u−uk−1

τ0
, ζ−ζ k−1

τ0
)

and ∂
ζ̇
R(u; u̇, ζ̇ )≈τ0∂ζ R(uk−1; u−uk−1

τ0
, ζ−ζ k−1

τ0
). It means that the inclusion is approximated at

discrete times τk by the first order optimality condition for the functional

H k(u,ζ ) = E (kτ0,u,ζ )+ τ0R(uk−1;
u−uk−1

τ0
,
ζ−ζ k−1

τ0
)+F (kτ,u). (6)

The optimality solution is denoted by uk. Substituting the previous time-step result into the
dissipation potential due to friction makes the pertinent functional convex with respect to the
unknown u, the optimality solution being thus unique and defining the minimum. The simple
viscosity model is chosen in order to exploit the reformulation of the visco-elastic problem in the
bulk in terms of an elastic problem in the bulk, which is solved by the elastostatic SGBEM [2].
Let us introduce a new variable v (a fictitious displacement), which will replace the admissible
u for the time step k, as

v = u+ τR
u−uk−1

τ0
, and also vk = uk + τR

uk−uk−1

τ0
. (7)
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Then, the functional H k is defined as

H k(v,ζ ) =
τ0

τ0+τR

[
1
2

∫
Ω A

ε(vA:)CA:ε(vA)dΩ +
1
2

∫
Ω B

ε(vB):CB:ε(vB)dΩ+

1
2

τ0

τ0+τR

∫
Γc

ζ (kn1 +ζ kn2)[u]
2
n +ζ (ks1 +ζ ks2)[u]

2
s + kg([v+

τR

τ0
uk−1]−n )

2dΓ

]
+
∫

Γc

−
τ0µkg

τ0+τR
[uk−1]−n ·|[v−uk−1]s|−Gd

(
ζ −ζ

k−1
)
+

α

2τ0

(
ζ −ζ

k−1
)2

dΓ

+
1
2

τR

τ0

∫
Ω A

ε(uAk−1):CA:ε(uAk−1)dΩ+
1
2

τR

τ0

∫
Ω B

ε(uBk−1):CB:ε(uBk−1)dΩ

−
∫

Γ A
t

fA · (vA +
τR

τ0
uAk−1)dΓ−

∫
Γ B

t

fB · (vB +
τR

τ0
uBk−1)dΓ , (8)

or any admissible v satisfying the condition

vη = wη(kτ)+
τR

τ0

(
wη(kτ)−wη((k−1)τ)

)
= w̃η(kτ) on Γ

η
u and0≤ ζ ≤ ζ

k−1onΓc. (9)

Let vk=argminH k(v). It is worth observing that the viscosity in (8) is eliminated in the sense
that the only energy term in the bulk associated to the unknown v is the elastic strain energy,
uk−1 is known from the previous time step. In finding the minimum of H k(v), an iteration for
v is rendered as a solution of an elastic BVP for unknown (fictitious) displacements v and the
actual tractions t of the visco-elastic model. For the solution of these BVPs an SGBEM code is
used, thus using in the minimization process only such solutions, it is convenient to change the
bulk integrals with v in to boundary based integrals∫

Ω η

ε(vη):Cη :ε(vη)dΩ =
∫

Γ η

tη(vη) ·vηdΓ . (10)

Once vk is obtained it can be transformed back to the original solution uk by the relation.

3.2 Spatial discretization and SGBEM

The role of the SGBEM in the present computational procedure is to provide a complete
boundary-value solution from the given boundary data for each domain in order to calculate
the elastic strain energy in these domains by using the boundary integral in(10). Thus, the
SGBEM code calculates unknown tractions along Γc∪Γu, assuming the displacements at Γc to
be known from the used minimization procedure, in the same way as proposed and tested in
[4], [5], [6]. The integral equations solved by SGBEM are the Somigliana displacement and
traction identities, written for each particular domain Ω η separately. The numerical solution is
obtained by the piecewise linear approximations of the form

vη(x) = ∑
p

Nη
ψ p(x)vη

p , tη(x) = ∑
l

Nη

ϕl(x)t
η

l , (11)
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with nodal shape functions Nη
ψ p(x) and Nη

ϕl(x) and nodal values vη
p and tη

l . Let the subvectors
of the nodal unknowns at the boundary parts Γ

η
u , Γ

η

t and Γc, respectively, be distinguished by
the same subscripts u, t and c. Then, SGBEM leads to the symmetric square matrix of the
following system of linear algebraic equations:−Uη

uu Tη

ut −Uη
uc

TηT
tu −Sη

tt TηT
tc

−Uη
cu Tη

ct −Uη
cc

tη
u

vη

t
tη
c

=

−1
2Mη

uu−Tη
uu Uη

ut −Tη
uc

Sη
uu

1
2MηT

tt −TηT
tt Sη

tc
−Tη

cu Uη

ct −1
2Mη

cc−Tη
cc

gη

fη

vη
c

 .(12)

The elements of the submatrices denoted with letters U, T and S are formed by double integrals
including the singular integral kernels denoted by the same letter as is usual in SGBEM, see [6].
The square 2×2 submatrices, associated with the nodes l and p, of the mass matrices Mη

rr (with
r=u, t,or c), are formed by the integrals:

(Mη
rr)l p =

∫
Γ

η
r

Nη

ϕl(x)N
η
ψ p(x)dΓ . (13)

3.3 MINIMIZATION ALGORITHM

Once all the boundary data (displacements and tractions) are obtained from the solution of ,
the energy of the state given by H k in (8) can be calculated using (10). It is worth to see how it
is carried out in the present implementation. First, let us reconsider the absolute value term and
the term with [·]− in H k. A classical trick of removing the unpleasant terms and replacing them
by additional unknowns with restrictions is used [6]. Let the additional auxiliary unknowns be
denoted as α and β and the following restrictions hold:

α− [v]s ≥−
[
uk−1

]
s
, β ≥ 0,

α +[v]s ≥
[
uk−1

]
s
, β +[v]n ≥−

τR

τ0

[
uk−1

]
n
.

(14)

For the discretization, the approximation formulas for both auxiliary parameters α , β given by
pertinent boundary element mesh should be considered. In what follows, the same mesh and
approximation as used in (11) for displacements on the boundary part Γ A

c is considered. The
approximation formulas can be written in the form:

α(x) = ∑
m

Nψm(x)αm, β (x) = ∑
m

Nψm(x)βm, ζ (x) = ∑
m

Nζ m(x)ζm, (15)

where αm, βm are the nodal unknowns pertinent to the node xA
m.
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Then, the discretized energy H k, from equation (8) using (10) and approximations (11)
and (15) is expressed as

τ0 + τR

τ0
H k(v,α,β ,ζ ) =∫

Γ A

1
2 ∑

p
NA

ψ p(x)v
A
p ·∑

l
NA

ϕl(x)t
A
l dΓ +

∫
Γ B

1
2 ∑

q
NB

ψq(x)v
B
q ·∑

r
NB

ϕr(x)t
B
r dΓ

+
∫

Γc

1
2

((
∑
m

Nζ m(x)ζm

)
kn1 +

(
∑
n

Nζ n(x)ζn

)2

kn2

)(
∑
q

NB
ψ sq(x)u

B
sq−∑

p
NA

ψ s p(x)u
A
s p

)2

+
1
2

((
∑
m

Nζ m(x)ζm

)
ks1 +

(
∑
n

Nζ n(x)ζn

)2

ks2

)(
∑
q

NB
ψ sq(x)u

B
sq−∑

p
NA

ψ s p(x)u
A
s p

)2

+µkg

(
∑
q

NAB
n pquBk−1

nq −uAk−1
n p

)−(
∑
q

Nψ q(x)αq

)]
dΓ

+
∫

Γc

−Gd

(
∑
n

Nζ n(x)(ζn−ζ
k−1
n )

)
+

α

2τ0
(∑

n
Nζ n(x)(ζn−ζ

k−1
n ))2dΓ

−
∫

Γ A
t

∑
p

NA
ψ p(x)v

A
p ·∑

l
NA

ϕl(x)f
A
l dΓ −

∫
Γ B

t
∑
q

NB
ψq(x)v

B
q ·∑

r
NB

ϕr(x)f
B
r dΓ

+V (uAk−1,uBk−1, fAk, fBk), (16)

where NAB
pq =NB

ψ q(x
A
p). The functional V includes all the data which are constant with respect

to v. In minimization of the functional (16) with the restrictions (14), it may be useful to
reformulate the problem in such a way that the restrictions change to bound constraints. The
left-column and right-column restrictions in (14) provide linearly independent constraints which
can respectively be written in a matrix form as(

IA −NAB
s IA

IA NAB
s −IA

)α

vB
s

vA
s

≥ (ξ1
ξ2

)
,

(
IA 0 0
IA NAB

n −IA

)β

vB
n

vA
n

≥ ( 0
ξ3

)
, (17)

with the identity matrix IA, the matrices NAB
n and NAB

s consisting of NAB
pq and ξi corresponding

to the right-hand sides in (14). Both inequalities are defined by full row-rank matrices. Thus,
denoting arbitrary matrices whose columns span respectively the null-spaces of the left-hand-
side matrices in (17) by Kα and Kβ , the following relations hold:α

vB
s

vA
s

=

 IA IA

−
(
NAB

s
)T (NAB

s
)T

IA −IA

(NAB
s
(
NAB

s
)T

+2IA −NAB
s
(
NAB

s
)T

−NAB
s
(
NAB

s
)T NAB

s
(
NAB

s
)T

+2IA

)−1(
y1
y2

)
+

Kα
α

KB
α

KA
α

zα ,

(18a)
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with the restrictions applied only to yi:
(

y1
y2

)
≥
(

ξ1
ξ2

)
andβ

vB
s

vA
s

=

IA IA

0
(
NAB

n
)T

0 −IA

(IA IA

IA NAB
n
(
NAB

n
)T

+2IA

)−1(
y3
y4

)
+

Kβ

β

KB
β

KA
β

zβ ,

with
(

y3
y4

)
≥
(

0
ξ3

)
. (18b)

Thus, there is the same number of bound constraints as provided by the more general restric-
tions (14). The discretized functional (16) can be expressed in a general matrix form as

H k(y) =
1
2

yT Ay−bT y+ c, −∞≤ ylow ≤ y≤ yup ≤+∞. (19)

The problem with standardly applied algorithms is that the matrix A might not necessarily be
calculated in an explicit way. The terms which arise from the first two integrals in the right-hand
side of (16) provide the energy and calculating the derivative with respect to the unknown v they
provide a projected traction Mt with M. The projected traction can naturally be calculated from
the SGBEM algorithm, represented by the product Ay in equation (19). Thus, each time the
optimization algorithm requires a matrix-by-vector product actually a system from the SGBEM
is solved. The influence matrices of the SGBEM, however, are calculated only once at the
beginning of the solution process, as they are the same for all the iterations and all time steps,
considering only small displacements.

3.4 NUMERICAL EXAMPLE

The present formulation of two-domain contact problem has been tested numerically by
a computer code, which was implemented in MATLAB. The developed numerical algorithm
exploits the variationally based Symmetric Galerkin Boundary Element Method to calculate
the elastic solution at the interface and in each subdomain. An example analysis presents the
response of the cohesive contact model with friction in combination with small amount of vis-
cosity. The geometry in the present example includes two rectangular domains mutually joined
and put on each other. The bottom domain is fixed along its bottom side to a rigid founda-
tion. The applied loading is assumed on the top domain in two subsequent steps, see Figure 3.
First, a vertical compress loading is applied which leads after the rupture of the interface to a
receding contact problem. Second, a loading equivalent to standard pull-push shear test well
known from several engineering applications is applied afterwards. The loading process de-
fines the prescribed displacements (hard-device loading) are increasing during the first phase
of the loading process. The incrementally prescribed loading is given by the relation wk

2=vτk,
k=1,2, . . .100 with v=1mm s−1 and τk=kτ0, τ0=2×10−5s. The first-increment of the horizon-
tal displacement w starts for w151

1 = 2× 10−5mm and it is further multiplied by a load step
factor (k−150), changing from the initial value k=151 until the total damage of the interface
becomes. In total was considered k=420 load steps during the whole loading process. The
geometry of the plane strain model and load configuration are conspicuous from Figure 3.
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Figure 3: Geometry of the two domain example.

3.5 Model properties and parameter statement

The dimensions of the top layer are L2=200mm and h2=40mm. This bulk is made of alu-
minum with Young’s modulus E=7×104MPa and Poisson’s ratio ν=0.35. It is considered that
prior to loading, this bulk layer is glued to the bottom layer along a part of its bottom side
in the extent of Lc=180mm. For the first case of loading the top layer is loaded along the
middle part of the top face, where the given length parameters are l= 7

16L2, lw=1
8L2, whereas

for the second shear loading the bulks are joined along the whole length of interface Lc. The
dimensions of the bottom bulk layer are L1=200mm and h1=200mm with elastic properties
E=7×104MPa and ν=0.35. The assumed cohesive interface material is epoxy resin, with
Young’s modulus Ec=2.4×103MPa and Poisson’s ratio νc=0.35. The corresponding stiffness
parameters were suggested according to the cohesive contact model: the interface stiffness is
defined by kn and ks: kn=1.4815×103MPa mm−1, ks=0.7408×103MPa mm−1. In order to
obtain continuous non-linear response of the investigated variables, both normal and tangen-
tial stiffnesses were split into two parts according to the relations: kn=kn1+kn2 , ks=ks1+ks2 ,
kn1=0.01× kn, kn2=0.99× kn1 , ks1=0.01× ks, ks2=0.99× ks1 . It is necessary to emphasize that
cohesive contact approach requires to consider more toughness at cohesive stiffness ks2 which
is related to quadratic term ζ 2 in interface stored energy functional as e.g. in (16). Thereby,
the non-linear response of investigated variables and continuous response has been acquired as
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well. The time-relaxation parameter for the visco-elastic model is τR=1×10−4s. The Coulomb
friction coefficient is µ=0.8. The principal parameters that govern the crack propagation are:
the fracture energy in Mode I Gd=10 Jm−2 and the viscosity parameter α=0.001Jm−2s.

3.6 Result of the analysis of the contact model

The achieved numerical solution of investigated interface contact model is presented in fol-
lowing figures. The main feature occurred in the graphs pertinent to the cohesive model is the
continuous non-linear response of the mechanical stress t and damage parameter ζ , see Fig-
ure 4, 5. The Figure 4 presents the evolution of the normal and tangential stress at the distance
x1 = 200mm, for whole loading process at each loadstep k.

Figure 4: Distribution of (a) mechanical stress t1, (b) mechanical stress t2.

The influence of cohesive continuous dependence is obvious, after the system reaches the re-
quired amount of fracture energy Gd . The presented continuity of the stress also captures the
influence of non-linear viscosity effect, in the stress peak of the graph. In agreement with afore-
mentioned cohesive-contact theory [3], let us mention that the evolution of damage parameter
ζ changes from one to zero continuously and thus preserves the continuous character of the
debonding process, see Figure 5. Figure 6 captures the evolution of the deformation process of
the layered structure. First, the structure is subjected to pressure load test w2, which yields com-
pressed deformation, see Figure 6(a), (b). Second, the shear load w1 is applied on the top layer.
This yields the deformation in tangential direction, such the delamination process at interface
occurs, see Figure 6(c),(d).
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Figure 5: Distribution of damage parameter ζ at distance (a) x1 = 150mm, (b) x1 = 200mm.

Figure 6: Evolution of multidomain deformation during the pressure load test (a,b) and shear test (c,d).
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4 CONCLUSIONS

An energy based model for solving the cohesive contact with effects of viscosity and friction
has been considered. The contact model provides an approach which was obtained by com-
bining the cohesive type contact and a small amount of viscosity to make the solution more
regular. The numerical implementation of spatial discretization via SGBEM has permitted the
whole problem to be defined only by a boundary and interface data. A simple 2D contact exam-
ple has been analyzed and has yielded the model response during the applied pressure and shear
test, respectively. Developed cohesive approach was obtained by mere adding a new energy
term with a new cohesive stiffness parameters providing required non-linear continuous depen-
dence of the investigated parameters. The proposed numerical model confirms the expected
behaviour in accordance with the applied theory and asses its applicability in several aspects of
engineering practise.
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[6] Vodička, R., Mantič, V. and Roubı́ček, T. An SGBEM implementation of quasi–static
rate–independent mixed-mode delamination model. Submitted to Meccanica (2014).

12


