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Abstract. Theory of complex variables is a very powerful mathematical technique for solving 
two-dimensional problems satisfying the Laplace equation. Based on the Cauchy integral 
formula, the complex variable boundary integral equation (CVBIE) can be constructed. 
However, the limitation of the above CVBIE is only suitable for holomorphic (analytic) 
functions. To solve a harmonic-function pair without satisfying the Cauchy-
Riemann equations, we propose a new CVBIE that can be employed to solve any harmonic 
function in two-dimensional Laplace problems. We can derive the present CVBIE by using 
the Borel-Pompeiu formula. The difference between the present CVBIE and the conventional 
CVBIE is that the former one has two boundary integrals instead of only one boundary 
integral is in the latter one. When the unknown field is a holomorphic (analytic) function, the 
present CVBIE can be reduced to the conventional CVBIE. To examine the present CVBIE, 
we consider a torsion problem in this paper since the two shear stress fields satisfy the 
Laplace equation but do not satisfy the Cauchy-Riemann equations. Based on the present 
CVBIE, we can straightforward solve the stress fields and the torsional rigidity 
simultaneously. Finally, several examples, circular bar, elliptical bar, equilateral triangular bar, 
rectangular bar, asteroid bar and circular bar with keyway, were demonstrated to check the 
validity of the present method. 
 
 
1 INTRODUCTION 

For many engineering problems, their physical phenomena can be described by certain 
mathematical models such as Laplace, Helmholtz, biharmonic or biHelmholtz equation etc. 
For instance, steady-state heat conduction problems [1, 2], electrostatic potential [3], torsion 
problems [4], and potential flow problems [5] satisfy the Laplace equation, membrane 

http://en.wikipedia.org/wiki/Cauchy%E2%80%93Riemann_equations
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Riemann_equations
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vibration [6], water wave problems [7], acoustics [8], electromagnetic radiation [9] and 
seismology [10] are simulated by the Helmholtz equation while Stokes’s flow [11] and plate 
vibration [12] are governed by the biharmonic and biHelmholtz equations, respectively. To 
simulate their physical behavior in advance, we must solve the corresponding mathematical 
model. For this reason, researchers and engineers paid more attention to develop various kinds 
of numerical methods such as the finite difference method (FDM), the finite difference 
method (FEM) the boundary element method (BEM) and meshless methods, etc.  
    Although the FEM is one of the most popular methods, it costs time on constructing the 
geometry model and needs to generate the mesh over the whole domain. In recent years, the 
BEM is an alternative approach to solve engineering problems. It is more efficient than the 
FEM since it is a mesh reduction method and only boundary discretization is required. There 
are many books and literatures focusing on the BEM such as Banerjee [13], Beskos [14], 
Bonnet [15], Brebbia [16], Chen and Hong [17], Crouch and Starfield [18], Kytbe [19], 
Liggett and Liu [20], and Mukherjee [21]. While the BEM is a well-developed numerical 
approach for solving engineering problems with general geometries, it results in errors of 
geometric discretization, boundary contour integrals and ill-posedness due to the fully 
populated influence matrix.  
    Regarding the above researchers, they paid more attention on the BEM and BIE in the real 
variable space. For the complex variable boundary element method (CVBEM), it has been 
applied in many fields. Hromadka II and Lai [22] developed a theorem of CVBEM to solve 
engineering problems. The CVBEM [23,24] is based on the Cauchy integral formula, residue 
theorem and Cauchy-Riemann equation in the complex analysis. It is more efficient for 
solving two-dimensional Laplace problems and plane elasticity than using the real variables 
boundary element method (RVBEM) since a complex-variable function can contain two fields. 
Nevertheless, it still has a limitation. The CVBEM based on the Cauchy integral formula is 
only suitable for the analytic (holomorphic) functions. When the two unknown fields are not 
the Cauchy-Riemann equation pairs, the conventional one can not be used to solve any 
harmonic functions such as the two shear stress fields in Saint-Venant's torsion problem. 
Accordingly, Di Paola et. al. [25] transformed the two shear stress fields to satisfy the 
Cauchy-Riemann equation by adding some terms and employed the line element-less method 
to solve it. Later, Barone and Pirrotta [26] used the complex polynomial method proposed by 
Hromadka and Guymon [27] to solve the same problem. Therefore, the conventional CVBEM 
can be employed to solve the two shear stress fields simultaneously. The corresponding 
complex-valued function is still an analytic (holomorphic) function. 
    In this paper, we propose a new CVBEM that can be utilized to solve any harmonic 
functions in the two dimensional domain. We derive the generalized Cauchy integral formula 
in terms of the form boundary integral by using the Borel-Pompeiu formula [28]. Not only the 
analytic (holomorphic) functions but also the harmonic functions satisfy the general one. 
Therefore, the corresponding complex variable boundary integral equation (CVBIE) can be 
derived. To check the validity the present CVBEM, the two shear stress fields of Saint-
Venant's torsion problem were considered. 

2 PROBLEM STATEMENT 

Here we consider an elastic bar subjected to the pure torsion at the end plane. According to 
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Saint-Venant's torsion theory, the displacement field on the end plane can be assumed as 
shown below: 

,u yz   (1)

,v xz  (2)

( ),w z  (3)

where   is the twist angle of per unit length of the bar and ( )z  is the warping function. By 
substituting the displacement field of Eqs. (1)-(3) to the strain-displacement relations, we 
have 

0,x y z xy        (4)

,yz x
y

 
 


 (5)

.xz y
x

 
 


 (6)

Then employing the stress-strain relations, we can obtain the stress field as shown below: 

0,x y z xy        (7)

,yz G x
y

 
 

   
 (8)

,xz G y
x

     
 (9)

where G  is the shear modulus. By applying the compatibility and equilibrium equations for 
stress field in Eqs. (7) to (9), we have  

2 ,yz xz G
x y

 


 
   

 
 (10)

0.yz xz

y x

  
 

 
 (11)

By taking the process of 
(11) (10)

,
y x

 


 
 we have  

2 2 2 22 2

2 2
0.yz yz yz yzxz xz

y y x y x x y x x y

        
     

         
 (12)

Similarly, by taking the process of 
(10) (11)

,
y x

 


 
 we have 
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2 22 2 2 2

2 2
0.yz yzxz xz xz xz

τ ττ τ τ τ

x y y y y x x x x y

    
      
         

 (13)

According to Eqs. (12) and (13), it is found that the two shear stress fields yz  and xz  are the 

harmonic functions. In this paper, we intend to employ a complex variable boundary integral 
equation (CVBIE) to solve the stress fields straightforward by setting the complex function as 
shown below: 

( ) .yz xzf z τ iτ   (14)

However, the above complex function does not satisfy the Cauchy-Riemann equations since 
the compatibility equation in Eq. (10) is not equal to zero. It is a harmonic function but not a 
holomorphic (analytic) function. That is to say, yz  and xz  do not satisfy the Cauchy-

Riemann pair. The set of harmonic functions includes the set of holomorphic functions and 
their relationship is shown in Fig. 1. For this reason, the conventional CVBIE based on the 
Cauchy integral formula is not suitable for solving any harmonic function. In this paper, we 
propose a new CVBIE that can be employed to solve all harmonic functions. Since no 
external force acting on the lateral surface of the bar, we have the traction free boundary 
condition as given below: 

( , ) ( , ) 0,xz yz x y xz x yz yτ τ n n τ n τ n     (15)

where xn  and  are horizontal and vertical components of the unit outward normal vector, 

respectively. The static equivalence condition for the torque 
yn

M  is defined as: 

( )xz yz ,M y x dxd 


   y  (16)

where  stands for the domain of the cross section. Besides, we can obtain the second 
boundary condition in terms of the complex function 


( )f z  from Eqs. (10) and (11) as shown 

below: 

( )
.

f z
G

z





 (17)

3 BOUNDARY INTEGRAL EQUATIONS IN COMPLEX VARIABLES 

In this section, we derive the new CVBIE from the Borel-Pompeiu formula [28]. First, we 
revisit the Borel-Pompeiu formula. The Gauss theorem for the two-dimensional case is  

,wdA w n dS
 
      (18)

where   is the gradient operator and w  is a real-valued function. In the complex analysis, we 
can obtain the complex-valued form of Gauss theorem from the above equation as  

( ) 1
( ) ,

2x y

w s
ds ds w s ds

s i 




   (19)

and its conjugate form is  
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( ) 1
( ) ,

2x y

w s
ds ds w s ds

s i 


 

  
 (20)

where x ys s is   and  is a complex-valued function. By substituting ( )w s
( )

( )
f s

w s
s z




 into 

Eq. (19), we have the Borel-Pompeiu formula for \Cz   as 

1 ( ) 1 ( )
0 .

2 x y

f s f s
ds ds ds

i s z s z s 


 

     (21)

Then, substituting 
2( )

ln
f s

s z
s





 for  in Eq. (20), we have  ( )w s

2
21 ( ) 1 ( ) ( )

ln ln ,
2

2

x y x y

f s f s f s
ds ds s z ds s z ds ds

s z s i s s s  

  
    

        (22)

where 1 2( ) ( ) ( ).f s C C    By substituting Eq. (21) into Eq. (22), we have  

2
2 21 ( ) 1 ( ) ( )

0 ln ln
2 2

.x y

f s f s f s
ds s z ds s z ds ds

i s z i s s s  

 
    

       (23)

If ( )f s  satisfies the two-dimensional Laplace equation 
2 ( )

0,
f s

s s




 
 i.e., ( )f s  is a harmonic 

function, the area integral in Eq. (23) vanishes. Therefore, we have 

21 ( ) 1 ( )
0 ln

2 2

f s f s
ds s z ds

i s z i s 


  

   .  (24)

When , a singular point exists in the domain z   in Eq. (24). To deal with this problem 
to obtain the singular BIE for , we need to employ the limiting process. By this way, we 
obtain  

z

21 ( ) 1 ( )
( ) ln , .

2 2

f s f s
f z ds s z ds z

i s z i s  


  

     (25)

If the field point z  is outside the domain ( \Cz  ), we can also obtain the null field BIE 
from Eq. (25) as 

21 ( ) 1 ( )
0 ln

2 2
C

f s f s
ds s z ds z

i s z i s  


   

   , \ .  (26)

If the field point z  is located on the boundary ( )z , Eq. (26) yields the singularity since 
 may occur. Therefore, we also need to employ the limiting process and introduce the 

concept of Cauchy principal value. Then, we have  
z s

21 ( ) 1 ( )
( ) . . . ln , ,

2 2 2

f s f s
f z C PV ds s z ds z

i s z i s


   


  

     (27)

where   is the solid angle and the  is the Cauchy principal value. After arranging Eqs. 
(25) to (27), we have the complex variable singular BIE, 

. . .C PV
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( ) 21 ( ) 1 ( )
( ) ( ) ln ,

2 2

z f s f s
c z f z ds s z ds

i s z i s  


  

    (28)

where  

1, ,

( ) , ,
2

0, \ ,C

z

c z z

z





 

  

 (29)

and 

( )

, ,

. . . , ,

, \ .C

z

z

C PV z

z



 



 


 

  



 



 (30)

4 DISCRETIZATION OF THE COMPLEX VARIABLE BOUNDARY INTEGRAL 
EQUATION FOR SOLVING THE STRESS FIELDS 

In this section, we employ the constant element scheme to discretize the CVBIE of Eq. (27) 
in the following 

       ,
2

f T f U g



   
  (31)

where  

       
1 1
, ,f gj jN N

f g
 

   (32)

 , ,T Ujl jl N NN N
T U


           
   (33)

in which, N  is the number of the element and each element of influence matrices  and 

 is determined by 

jlT  


jlU 

1 1
. . . 0, ,

2

1 1 1
ln( ) , ,

2 2

l

R
l l

L
l ll

l
l j

jl
s s

l l j s s
l j

C PV ds j l
i s z

T

ds s z j l
i s z i



 







    
   
 




  (34)

21
ln ln ( ),

2

l

l l

i

jl l j l l j l

e
U s z ds s z

i i



 



 
     dt s  (35)
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where  and  are the coordinates of the starting and ending points for the lth element, 

respectively, 

L
ls R

ls

l  and  are the argument and the path integral of the lth element, 

respectively, and  

( )ldt s

( )
.

l

l
s s

f s
g

s 





 (36)

Since the collocation point is the central point of the corresponding element, the solid angle 
  is equal to  . After arrangement for Eq. (31), we have  

       ,T f U g 0   (37)

where the influence matrix  T  is equal to  

   1
,

2
T T I   

  (38)

in which,  I  is the identity matrix. After substituting the boundary condition in Eq. (17) to 

Eq. (37), we have  

       ,T f p 0G   (39)

where  p  is equal to  

    .p U 1  (40)

It is noted that there are  unknown coefficients in the present approach for solving the 
stress fields of the pure torsion problem. To satisfy the traction free boundary condition, we 
can assume  

1N 

( ) ( ) ( ), ,f z n z β z z   (41)

where ( ) x yn z n in   and  is the magnitude of ( )β z ( )f z  for the boundary point. By this way, 

two gains are obtained. Automatically satisfying the traction free boundary condition is the 
first one. The second one is that all unknown coefficients are real-valued. Also using the 
constant element scheme to discretize Eq. (41), we have  

    ,f n β  (42)

where  

    1
,β l N




  (43)

  ,n jl N N
n


     (44)

in which, jln    is a diagonal matrix as given below: 

( ), ,

0, .

j

jl

n z j l
n

j l

 


 (45)
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Substituting Eq. (42) to Eq. (39), we have  

      ,Tn β p 0G   (46)

where  

    .Tn T n  (47)

Furthermore, to easily calculate the static equivalence condition, we transform it into the form 
of contour integrals as shown below: 

3 3 1
( ) ( ) ( ).

3 3 2x y

x y
M G n n dt z zz z dt z 

 

 
    

 
   (48)

Also, we employ the constant element scheme to discretize the static equivalence condition in 
Eq. (48) and we have  

    ,q β
T

pGI M   (49)

where 

   
1

,q
TT

j N
q


  (50)

3 3

( ),
3 3p x y

x y
I n n dt



 
  

 
 z  (51)

in which,  

1
( ).

2 j
j jq zzdt


  z  (52)

Then, we have the following linear algebraic equation by combining Eq. (46) with Eq. (49) 

   
 

 
( 1) 1( 1) 1( 1) ( 1)

.
Tn p 0β

q
T

Np NN N
MGI      

     
     

     
 (53)

To ensure the influence matrix in Eq. (53) to be full rank, we update it as expressed below: 

     
     

 

 
 
 

( 1) 1
(2 1) 1

(2 1) ( 1)

Re Re

Im Im .

Tn p 0
β

Tn p 0

q
NT

Np N N

G

G

MGI


 
 

  

             
     
    

 (54)

It is noted that all elements of the influence matrix in Eq. (54) are real-valued. Since the 
influence matrice is over-determined, we employed the pseudoinverse matrix method to 
evaluate its inverse matrix. Regarding the present approach for solving the torsion problems, 
the torsional rigidity,  can be obtained straightforward as expressed below: ,D

.
M

D


  (55)

Without loss of generality, we set the torque M  to be 1 in the real implementation.  
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5 NUMERICAL EXAMPLES AND DISCUSSIONS 

In this paper, we consider six cases to demonstrate the validity of the present complex 
variable boundary element method (CVBEM). The sketches of cross section are depicted in 
Figs. 2. For the circular case with a radius ( 2a  ) as shown in Fig. 2, numerical results for 
the torsional rigidity versus number of elements are listed in Table 1. Also, the convergence 
curve is plotted in Fig. 3. However, the rate of convergence is not fast. After comparing with 
the analytical solution, the numerical results obtained by the present CVBEM are acceptable. 
In the conventional boundary integral formulations, only the normal derivative is required and 
the tangent derivative is not. While the differential term in the present CVBIE contains both 
normal and tangent derivatives along the boundary. In our real implementation, the constant 
element scheme is employed. The rate of convergence is not fast, due to more constant 
element to simulate the tangent derivative. This can explain why lower number of element can 
not yield good result. Nevertheless, the present CVBEM still has its benefits for solving 
torsion problems. Not only the torsional rigidity but also the stress fields can be obtained 
straightforward. The stress flow of a circular bar subjected to a torque is plotted in Fig. 4. 

 
 

 
 

Harmonic functions 

Holomorphic 
functions 

Figure 1: The sketch of relation between the set of holomorphic functions and harmonic functions 

 

 

a

Figure 2: Acircular cross-section 
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Figure 3: Torsional rigidity versus the number of elements 

 
 

Figure 4: Vector field of the two shear stress fields 

Table 1: Torsional rigidity of a circular bar 

1a   Prensent CVBEM Analytical solution Relative error (%) 
N=10 1.58189 0.706 
N=20 1.62912 3.713 
N=30 1.62123 3.211 
N=40 1.61288 2.679 
N=50 1.60649 2.272 

N=100 1.59063 1.263 
N=150 1.58445 0.869 
N=200 1.58120 0.662 
N=250 1.57920 0.535 
N=300 1.57784 

1.57080 

0.448 
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6 CONCLUSIONS 

- In this paper, we have successfully proposed a new CVBEM to solve the Saint-
Venant's torsion problems.  

- The present CVBEM can be derived from the Borel-Pompeiu formula in stress 
variables.  

- Deferent from the conventional CVBEM based on the Cauchy-Riemann equations, 
the present approach not only can solve holomorphic (analytic) functions but also can 
solve harmonic functions.  

- The main character of the present method is that we can directly solve the two shear 
stress fields at the same time.  

- By using the present approach for solving the Saint-Venant's torsion problems, two 
benefits can be gained.  

- The stress fields and the torsional rigidity can be determined straightforward without 
any numerical differentiation and integration again, respectively.  

- From above view point, the present CVBEM is more general and convenient than the 
conventional one when solving the Saint-Venant's torsion problems, although the rate 
of convergence is not fast. 
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