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Abstract.
Several Flapping Wing Micro Air Vehicle (FWMAV) designs exploit structural res-

onance to decrease power consumption. Practical use of most resonating structures re-
quires temporary modifications to the resonance mode (i.e., the eigensolution). This paper
presents a systematic design approach to modify non-proportionally damped resonance
modes in a desired way while consuming minimal control power. These modifications are
induced by local structural changes. Eigensolution sensitivities in the modal basis are
used to linearly approximate the effect of these changes on the resonance mode. Results
show that the interpretation of resonance mode changes is highly clarified by introducing
the modulus (magnitude) and argument (phase) information of the resonance mode. The
proposed projection allows the determination of the locations at which a specific structural
change scores maximum effect in terms of relative magnitude and/or phase modifications.
The applied modal approach reduces the size of the problem, which is advantageous during
analysis. This work shows resonance mode modifications of non-proportionally damped
systems due to local structural changes in a intuitive manner.

1 INTRODUCTION

Structural resonance can be exploited in mechanical applications to obtain a specific
motion at relatively low actuation power [1]. At resonance there is, ideally, only energy
dissipated by damping and this energy should be compensated for by the input excitation.
Based on the intentional use of resonance within nature [2], several Flapping Wing Micro
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Air Vehicle (FWMAV) designs mimic the resonating thorax structure of insects to increase
energy efficiency [3, 4]. These designs use structural resonance properties to achieve the
desired flapping motion of the wings. The damping acting on these designs is primarily
caused by the aerodynamics and is therefore localized around the wings. Hence, these
FWMAV designs can be seen as non-proportionally damped resonating structures.

A FWMAV design, and many other applications, require some form of control by tem-
porary modifying the resonance mode. Resonance modes are determined by structural
properties (i.e., mass, damping, stiffness and their spatial distribution) such that the
resonance mode modifications can be controlled by introducing local structural property
changes. These local structural changes can be induced by attaching actuators (e.g., piezo-
electric patches) to the structure [5]. To modify resonance modes effectively, we search for
the optimal location to induce structural changes to achieve substantial resonance mode
modifications with minimal control power consumption.

Sensitivity analysis can be used to linearly approximate the change of the resonance
mode (i.e., eigenvalue and eigenmode) due to local structural changes. Although the
eigenvalue sensitivity is straightforward, the eigenmode sensitivity is more involved. For
undamped systems, a modal method has been presented which expresses the eigenmode
sensitivities as a linear combination of the eigenmodes [6] while another method requires
only the eigenmode of interest [7]. These methods have been extended to allow for eigen-
solution sensitivities of viscously damped [8, 9, 10] and non-viscously damped systems
[11, 12]. Eigensolution sensitivity analysis has been combined with optimization tech-
niques to design undamped vibrating structures that target desired resonance modes
[13, 14, 15]. Additionally, eigensolution sensitivities are employed to indicate the effect
of temporary local structural modifications on resonance modes [16]. The latter uses the
modal basis of the structure to increase intuitive insights.

However, studies on the (temporary) control of eigensolutions have been focusing
on undamped systems. Hence, systematic ways to modify resonance modes of (non-
proportionally) damped systems using local structural changes are not addressed in lit-
erature. This paper presents a systematic design approach to modify non-proportionally
damped resonance modes in an insightful way using local structural changes while con-
suming minimal control power.

This work focuses on eigensolution (i.e., eigenvalues and eigenmodes) modifications
since they mainly determine the resonance configuration. The eigenvalues are assumed to
be nonzero (i.e., no rigid body modes) and distinct (i.e., no repeated eigenvalues). As a
first step, the damping is assumed to be viscous. A modal basis is used as the preferred
basis to provide more intuitive understanding and maximum insight.

This paper is organized as follows. Section 2 presents the systematic approach to
modify eigensolutions in the desired way. The relative modulus (magnitude) and argument
(phase) of the resonance modes are determined to clarify the interpretation. In Section 3
we illustrate the presented systematic approach on a simple N -dof mass-spring-damper
system. Section 4 presents conclusions and suggestions for future research.
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2 METHOD

This section presents an approach to describe non-proportionally damped resonance
mode modifications due to local structural modifications. Firstly, we show the damped
eigenproblem for free vibrations, followed by an interpretation of the eigenmodes. After
that, we present eigensolution sensitivities due to structural changes and a projection
method to modify eigensolutions in a systematic way.

2.1 Eigenproblem formulation

The dynamic equilibrium of a viscously damped system is governed by

Mq̈ + Cq̇ + Kq = p (t) , (1)

where M, C and K ∈ RN×N are the mass, damping and stiffness matrix, respectively,
q ∈ CN is the response vector and p ∈ RN is the excitation vector. M and K are
symmetric and positive definite to exclude the presence of rigid body modes whereas C
is symmetric and non-negative. If we assume a free vibration (i.e., when no external load
p (t) is applied) in the form of q (t) = xeλt, the damped eigensolutions are defined as the
solution of the damped eigenvalue problem:(

λ2kM + λkC + K
)
xk = 0, ∀k = 1, . . . , N. (2)

In Eq. (2), λk ∈ C is the kth eigenvalue and xk ∈ CN is the corresponding eigenmode.
We can put Eq. (2) into a standard first-order eigenvalue problem by casting it into the
state-space form. That is,

(λkA + B)

[
λkxk
xk

]
= (λkA + B) zk = 0 ∀k = 1, . . . , 2N, (3)

with A =

[
0 M
M C

]
, and B =

[
−M 0

0 K

]
. (4)

In Eq. (3), the eigenvalues λk ∈ C and eigenmodes zk ∈ C2N appear in complex conjugate
pairs. For convenience, we arrange the eigenvalues as

λ1, λ2, . . . , λN , λ
∗
1, λ
∗
2, . . . , λ

∗
N , (5)

where (•)∗ denotes the complex conjugate. Repeated eigenvalues are excluded in this
analysis. Since the viscous damping is assumed to be non-proportional, the eigenvalues λk
and eigenmodes xk are always complex indicating free vibration solutions which represent
non-synchronous damped oscillations. As for real modes, complex modes can be scaled
arbitrarily. However, the relative importance of the real and imaginary component of
the complex eigenmode is brought to evidence by specific scaling. The eigenmodes are
normalized using [9]

zTkAzk = xTk [2λkM + C] xk =
1

γk
, (6)
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where γk ∈ C represents the normalization constant and (•)T denotes the vector transpose.
Although there are several ways to select γk, we choose γk = 1/2λk which is most consistent
with traditional modal analysis practice. This eigenmode normalization minimizes the
relative contribution of the imaginary part while maximizing the the real part. Hence,
the real part contains most of the information. Since damping is non-proportional, the
imaginary parts of the eigenmodes is never equal to zero.

2.2 Modulus and argument of an eigenmode

Eigenmode xk has a real and an imaginary part (i.e., xk = [< (xk) + i= (xk)] where
< and = indicate the real and imaginary part, respectively). Subsequently, there are
two shapes which determine the complex, non-synchronous eigenmode. For a more clear
and unambiguous interpretation, the modulus (magnitude) and argument (phase) of each
degree of freedom (dof) of the eigenmode are determined. The modulus determines the
relative vibration amplitude of each dof with respect to the other dofs. This leads to
a single, real shape (i.e., comparable to an undamped real eigenmode). The argument
determines the relative phase of each dof such that the phase lag/lead of a specific dof
with respect to other dofs can be determined to describe the non-synchronousness of the
eigenmode. The modulus of a specific dof i of eigenmode xk is given by

[|xk|]i =

√
([< (xk)]i)

2 + ([= (xk)]i)
2 ∀i = 1, . . . , N, (7)

leading to the modulus set |xk| ∈ RN and the corresponding argument of dof i is given by

[φk]i = arctan

(
[= (xk)]i
[< (xk)]i

)
∀i = 1, . . . , N, (8)

leading to the argument set φk ∈ RN . Contrary to the argument set φk of the currently
investigated non-proportionally damped systems, φk is constant (i.e., the same for all
dofs) for proportionally damped systems and zero for undamped systems.

2.3 Eigensolution sensitivities

Structural changes, as applied by control actuators, lead to eigensolution modifica-
tions. These modifications can be approximated using first order sensitivity analysis.
The structural changes of the system are described by a set of m control variables,
s = {s1, s2, . . . , sm}T ∈ Rm, so that the mass, damping and stiffness matrices become
functions of s. In this section, we consider one arbitrary element of the control vector s,
s1. For convenience, the notation ∂ (•)/∂s1 ≡ (•)′ is used. This section presents and inter-
prets a summary of relevant results from the research of [9] on eigensolution sensitivities
in the modal basis.

Using the normalization definition (see Eq. (6)), the sensitivity of the kth eigenvalue to
the control variable s1 is determined to be

λ′k = −γkxTk
[
λ2kM

′ + λkC
′ + K′

]
xk, (9)
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which clearly shows the influence of the physical changes to the structural matrices. The
real part of λ′k ∈ C (i.e., < (λ′k)) affects the decay rate of eigenmode k during a free
vibration while the imaginary part (i.e., = (λ′k)) affects the damped eigenfrequency.

For the eigenmode sensitivity, we first express the eigenmode sensitivity of the first-
order system (see Eq. (3)) as a linear combination of all eigenmodes zl. That is,

z′k =
2N∑
l=1

αklzl, (10)

where αkl ∈ C determines the contribution of eigenmode zl to the sensitivity of eigenmode
zk. The calculated contribution coefficients, αkl, are of little use since they are in terms of
the first-order system. By using Eqs. (3) and (4), αkl for l = 1, . . . , 2N can be expressed
in terms of the eigenmodes of the second-order system. Hence, the eigenmode sensitivity
of the second-order system can be expressed by

x′k =
2N∑
l=1

βklxl, (11)

where βkl is given by

βkl =



−γl
xTl
[
λ2kM

′ + λkC
′ + K′

]
xk

(λk − λl)
, ∀l = 1, . . . , 2N, l 6= k, k +N , (12)

−γk
2

(
xTk
[
2λkM

′ + C′
]
xk
)
, for l = k, (13)

iγ∗k
2= (λk)

(x∗k − ηxk
xk)

T [λ2kM′ + λkC
′ + K′

]
xk, for l = k +N, (14)

with
ηxk

= γk

(
(x∗k)

T [(λk + λ∗k) M + C] xk

)
. (15)

A careful inspection of the expressions for coefficient βkl (see Eqs. (12), (13) & (14)) shows
that:

• The numerator of Eq. (12) depends on the location and dimension of the structural
change. This dependency is caused by the interplay between the segments of the
eigenmodes xk and xl and the sensitivity of the structural matrices corresponding
to the locations at which the structural changes take place.

• The denominator of Eq. (12), (λk − λl), shows that the contribution of eigenmode
xl to the sensitivity of eigenmode xk reduces if the corresponding eigenvalue λl
deviates more from eigenvalue λk.
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Figure 1: Illustrative sketch of the first eigenmode of a non-proportionally damped 3-dof system,
visualized in the complex plane. (a) the non-synchronous nominal eigenmode, (b) change of dof 1 (i.e.,
towards encircled star) after a finite structural change, ∆s1, expressed in real and imaginary changes
and, (c) change of dof 1 expressed in modulus and argument changes. The changes of dof 2 and 3 are
not depicted for clarity reasons.

• The contribution of eigenmode xk to the sensitivity of eigenmode xk (see Eq. (13))
will be zero if the local structural modification introduces solely stiffness changes
(i.e., M′ = C′ = 0 and K′ 6= 0). Eq. (13) arises from the applied normalization of
the modes resulting in a scaling of the modes if either M′ or C′ is unequal to zero.

Since the eigenmode xk is complex the eigenmode sensitivity, x′k, can be expressed by

x′k = [< (x′k) + i= (x′k)] , (16)

which shows modifications to the real and imaginary part. Figure 1a shows an illustra-
tive sketch of the first eigenmode corresponding to a non-proportionally damped system,
visualized in the complex plane. The change of dof 1 due to a finite control variable
change ∆s1 can be approximated using Eq. (11) and Eq. (16) and is shown in Figure 1b.
However, the interpretation is not straightforward since the eigenmode change leads to a
relative shape and phase change of the dofs in the system.

2.4 Modulus and argument sensitivities

For a clear interpretation of the eigenmode sensitivity, the modulus and argument
sensitivities of each dof are determined in this work. The modulus (see Eq. (7)) and
argument (see Eq. (8)) sensitivity of a specific dof i to control variable s1 is given by

[|xk|′]i =
[< (xk)]i [< (x′k)]i + [= (xk)]i [= (x′k)]i√

([< (xk)]i)
2 + ([= (xk)]i)

2
, (17)

leading to the modulus sensitivity set |xk|′ ∈ RN , and

[φ′k]i =
[= (x′k)]i [< (xk)]i − [= (xk)]i [< (x′k)]i

([< (xk)]i)
2 + ([= (xk)]i)

2 , (18)
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leading to the argument sensitivity set φk
′ ∈ RN , respectively. With expression Eq. (16),

the modulus and argument sensitivity can be determined after the eigenmode sensitivity is
calculated. Figure 1c shows the approximated modulus and argument change of dof 1 due
to a finite control variable change, ∆s1. The modulus sensitivity determines the change
of the vibration shape and the argument sensitivity determine the change in leg/lead of
a specific dof with respect to other dofs. This representation defines resonance mode
changes in a much clearer way.

2.5 Resonance mode modification measure

In research on undamped resonance mode control, specific regions of the resonance
mode have been selected at which the relative vibration amplitude needed to be maximized
or minimized [13, 16]. To select these regions, a projection set was determined with non-
zero entries at the locations which correspond to the spatial dofs at which the dynamic
response needed to be modified. Control of non-proportionally damped resonance modes
requires modifications to the relative magnitude and argument at specific regions.

To maximize or minimize the relative magnitude at a specific region, we define a similar
normalized projection set (i.e., b‖ ∈ RN). We obtain a quantitative measure of the
nominal magnitude of the resonance mode, |xk|, at the locations of interest by projecting

|xk| onto the projection set b‖ resulting in a projection value r
‖
k (i.e., r

‖
k =

(
b‖
)T |xk|).

The modulus projection value sensitivity due to a structural change is given by(
r
‖
k

)′
=
(
b‖
)T |xk|′. (19)

Whenever the relative magnitude at the location of interest needs to be maximized, the
structural changes should be chosen such that Eq. (19) is maximized. Due to the nor-
malization of the resonance modes (see Eq. (6)), the magnitude shape will change if the
relative amplitude at a specific point is maximized or minimized.

Maximizing or minimizing the relative argument at a specific region within the struc-
ture is useless since the argument is not constrained or normalized like the magnitude.
Hence, for argument control, we induce structural changes to modify the argument dif-
ference between dofs within the resonating structure. To minimize or maximize the argu-
ment difference between specific regions, we define a similar projection set (i.e., b∠ ∈ RN).
Subsequently, we obtain a quantitative measure by projecting this projection set onto the
nominal argument set of the resonance mode, φk, resulting in a projection value r∠k (i.e.,

r∠k =
(
b∠
)T

φk). The argument projection value sensitivity due to a structural change is
given by (

r∠k
)′

=
(
b∠
)T

φ′k. (20)

Eq. (20) provides a tool to minimize/maximize the leg/lead of a specific dof (or region)
with respect to another dof. The optimal local structural changes to modify resonance
modes effectively in the desired way can be found by combining Eq. (19) and Eq. (20)
into an optimization formulation.
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x

y m1 m2 mN

c1 c2 c3 cN cN+1

k1 k2 k3 kN kN+1

x1 x2 xN

Figure 2: N -dof mass-spring-damper system with mass mi = 0.5 kg for i = 1, . . . , N , stiffness kj = 2
N/m for j = 1, . . . , N + 1 and damping cn = 1 Ns/m for n = 1, . . . ,N/2 and cn = 0 Ns/m for n =
N/2 + 1, . . . , N + 1. The longitudinal vibration (i.e., in x-direction) is represented by xp for p = 1, . . . , N .

3 NUMERICAL EXAMPLE

This section illustrates the presented systematic approach to modify non-proportionally
damped resonating structures using a simple mass-spring-damper system. Firstly, the
N -dof mass-spring-damper system is introduced together with some corresponding free
vibration eigensolutions. After that, we present the projection sets to modify magnitude
and argument at the locations of interest. With these projection sets, we identify the
optimal locations to apply the local structural changes.

3.1 N-dof mass-spring-damper system

This example uses a simple clamped-clamped rod, represented by the N -dof mass-
spring-damper system of Figure 2. The longitudinal vibrations (i.e., vibrations in x-
direction) are investigated. However, the vibration modes will be presented in the y-
direction for obvious visualization reasons. The number of dofs N = 10, the mass mi = 0.5
kg for i = 1, . . . , N , spring stiffness kj = 2 N/m for j = 1, . . . , N + 1 and damping cn = 1
Ns/m for n = 1, . . . ,N/2 and cn = 0 Ns/m for n = N/2 + 1, . . . , N + 1. Hence, we have a
non-proportionally damped mass-spring-damper system.

3.2 Free vibration eigensolutions

Since the system is non-proportionally damped, the eigenvalues and eigenmodes are
complex. Table 1 compares the first 4 complex eigenvalues λk with their corresponding
undamped eigenvalues ωk. All complex eigenvalues have a negative real part indicating
modal damping. The modal damping of the 2nd eigenvalue is clearly larger. The damped
eigenfrequency, represented by the imaginary part of the eigenvalues (i.e., = (λk)), deviates
more from the undamped eigenfrequencies for higher eigensolutions.

Table 1: Comparison first 4 eigenvalues, undamped versus damped.

Eigenvalue 1 2 3 4

Undamped, ωk 0.5693 1.1269 1.6617 2.1626

Damped, λk −0.0406 + 0.5693i −3.6754 + 1.1135i −0.1128 + 1.1746i −0.4452 + 1.6423i
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(f) Rotation of the 10 dofs in a
complex plane representation.

Figure 3: Different representations of eigenmode 1, x1.

Figure 3 shows different representations of the first eigenmode, x1. Figure 3a and
Figure 3b show the real and imaginary part of the eigenmode, respectively. The imaginary
part is clearly smaller compared to the real part. Figure 3c shows the imaginary part of
the complex conjugate of eigenmode 1 (i.e., = (x∗1)) which shape is identical to the shape
of Figure 3b apart from the minus sign. The real part of the complex conjugate of x∗1 is
identical to the shape of Figure 3a. Figure 3d shows the modulus of the first eigenmode,
|x1|, which looks comparable to the real part of the mode as shown in Figure 3a since the
magnitude of the imaginary part is small. Figure 3e shows the corresponding argument,
φ1, showing the lag of the first dofs with respect to the other dofs during resonance.
The Figures 3d and 3e determine the resonance mode behavior in a more insightful way.
Figure 3f visualizes the different dofs of the resonance mode in the complex plane. During
resonance, these dofs rotate around the origin, through the complex plane, while the
argument difference between the dofs remains the same.

3.3 Projection set for magnitude and phase modifications

In this example, we aim to modify the modulus and argument of the first nominal
resonance mode, x1, in a desired way. For the modulus, we specify dof 7 and 8 for which
the relative modulus should be maximized. Figure 4a shows the defined normalized mod-
ulus projection set b‖. By projecting the modulus sensitivity onto this projection set (see
Eq. (19)), we focus on the modulus sensitivity of these dofs only. For the argument, we
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(a) Magnitude projection set (i.e., b‖)).
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0.0
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(b) Phase projection set (i.e., b∠)).

Figure 4: Projection sets to select the region of interest for modulus and argument modifications.

want to maximize the argument difference between dof 2 and dof 9. Figure 4b shows
the defined normalized argument projection set b∠. By projecting the argument sensi-
tivity onto this projection set (see Eq. (20)), we focus on the sensitivity of the argument
difference between these dofs only.

3.4 Most effective location to modify structural property

For this example, we consider two different structural property changes to modify the
resonance mode: (1) stiffness changes to modify the relative modulus, and (2) damping
changes to modify the argument differences. For effective resonance mode control, we
search for the locations at which the projection value sensitivity (see Eqs. (19) and (20))
is maximized due to the structural property changes. In this example we calculate sensi-
tivities to the individual springs and dampers to find the most effective locations.

Figure 5a shows the spring dependent modulus projection value sensitivity, (r
‖
1)
′. The

11 sensitivity values are obtained by taking the sensitivity of the projection value to
the individual springs kj for j = 1, . . . , 11. Figure 5a clearly indicates that the relative
modulus of dof 7 and 8 is increased most effectively if positive stiffness changes are applied
to the first few springs (i.e., spring 1, 2 and 3).

Figure 5b shows the damper dependent argument projection value sensitivity, (r∠1 )′.
The 11 sensitivity values are obtained by taking the sensitivity of the projection value
to the individual dampers cn for n = 1, . . . , 11. Figure 5b clearly indicates that the
argument difference between dof 2 and 9 is increased most if positive damping changes
are applied to the first two dampers or if negative damping changes are applied to the last
two dampers. However, negative damping changes of the last two dampers is not possible
since the damping is already zero.

4 CONCLUSIONS

This work presents a systematic design approach to control non-proportionally damped
resonance modes in an insightful way. This control is achieved using local structural
property changes. The introduced modal basis gives enhanced insights in the possibilities
and limitations of the potentially achievable changes of the resonance mode of interest.
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Figure 5: Structural property dependent projection value changes to determine the most effective spot
to induce local structural property changes to modify the resonance mode in the desired way.

If the number of dofs of the system increases, the eigenmode sensitivity (and, hence,
the modulus and argument sensitivity) appears to be mainly determined by neighboring
eigensolutions. Hence, a limited number of eigensolutions is required during the analysis
which reduces the computational effort.

Eigenmodes of non-proportionally damped systems are complex which complicates the
interpretation. This is caused by the fact that both the real and imaginary part of the
eigenmode contain information. The modulus (magnitude) and argument (phase) of each
eigenmode appear to be much more insightful in interpreting complex eigenmodes and
eigenmode modifications due to local structural changes.

Projection sets are defined to specify the regions at which the resonance mode should
be modified. These projection sets allow to specify: (1) the locations at which the relative
modulus of a specific resonance mode should be changed, and (2) the regions for which
the argument difference should be modified. Hence, non-proportionally damped resonance
modes can be modified in a systematic and intuitive manner.

Future work will focus on the response modifications of non-proportionally damped
systems which are harmonically driven at a frequency which is very close to one of the
structural eigenfrequencies.
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