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Abstract. A new algorithm for the solution of the unsteady adjoint equations is proposed
in this paper aiming at overcoming the excessive computational cost and memory require-
ments of the conventional adjoint approach for the optimization of unsteady problems in
computational mechanics. The proposed algorithm consists of two phases: the first one is
based on the backward in time solution of the adjoint equations based on average in time
state quantities and the second one solves the exact unsteady adjoint equations forward
in time, based on the initial adjoint condition derived from the averaging technique of the
first phase. The proposed algorithm is compared to other approaches in the case of the 1D
unsteady Burgers equation with non-smooth source terms which resembles the modelling
of unsteady turbulent flows with very fine temporal discretization modeled using LES,
DES or DNS methods. The adjoint variables are computed with acceptable accuracy at a
cost of four times solving the unsteady state equations with negligible additional memory
requirements.

1 INTRODUCTION

The adjoint approach, either discrete [1] or continuous [2], is the most efficient means
to compute the sensitivity derivatives of objective functions with respect to the control
variables in optimization problems, since its cost is almost equal to that of solving the
state equations, independent of the number of design variables.

The basic advantage of the adjoint approach is retained in the case of unsteady prob-
lems, since its cost is still independent of the number of control parameters. However,
since the solution of the unsteady state equations marches forward in time (an initial
condition is given), the solution of the derived unsteady adjoint equations should march
backward in time [3]. This is obeyed from the mathematical derivation, either in the
discrete or the continuous form, since a final (rather than initial condition for the adjoint
equations) is derived. The actual problem arises from the fact that in this backward
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propagation, the solution of the state equations should be available at each time step.
Thus, the state solution should either be stored for the whole time history or recomputed
from scratch. The first approach increases the memory requirements while the second one
increases computational cost.

The most well known approach to circumvent the unsteady adjoint problem is the
checkpointing method [4, 5]. The unsteady adjoint equations are still solved backward in
time but the flow solution is stored at some of the intermediate time steps and the CPU
cost and memory requirement are balanced. Although the optimization of the checkpoint-
ing technique has been achieved, the optimal CPU cost and required memory are still high
and even unaffordable in the case that a lot of time steps (fine temporal discretization)
is required. This is, for instance, the case of the optimization of unsteady turbulent flows
especially those that require Large Eddy Simulation, Detached Eddy Simulation or Direct
Numerical Simulation models.

The adjoint approach to the optimization of large scale unsteady turbulent flows pre-
sented in [6, 7] required very large storage and was still not using LES, DES or DNS. The
adjoint approach to an LES model has been presented [9, 10], based on backward in time
solution, and, thus, confined to simple flow problems, such as the identification of the wall
model parameter in a quite simplified flow. On the other hand, the adjoint approach to
the DNS model has only been applied to small scale problems [8], based on the standard
backward in time propagation.

Only a few algorithmic approaches have been developed attempting to solve the un-
steady adjoint equations forward in time; the local in time approach [11], where the total
temporal domain is divided to subdomains and the total procedure is forward in time
but at each subdomain the adjoint equations are solved backwards in time. and the
Monte Carlo method [12], based on the structure of the total Jacobian matrix and using
probabilistic theory.

This paper aims at overcoming the requirement of solving the unsteady adjoint equa-
tions backward in time, retaining acceptable accuracy in the adjoint field solution and
computed sensitivities. The proposed approach incorporates a little bit higher computa-
tional cost, being, expected, however, to produce quite accurate adjoint fields and sensi-
tivities. It is based on the forward solution of the exact unsteady adjoint equations; the
required initial adjoint condition is provided by solving the unsteady adjoint equations
backwards in time, using the average in time field of the state variables. Thus, this ap-
proach has two phases. At the first phase, the backward solution, the computational cost
is almost equal to that of solving the state equations and requires the additional storage
of the average in time state variable field only. An adjoint variable field corresponding
to the initial time is computed and stored and this feeds the second phase, the forward
solution, whose cost is almost equal to twice that of the unsteady state equations, This is
due to the fact that the state variable field at each time step is not stored at the first phase
and is recomputed at the second phase at each time step, together with the solution of
the unsteady adjoint equations. Thus the total computational cost is almost equal to four
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times the solution of the unsteady state equations which is considered quite low compared
to the steady state problem, especially keeping in mind that there is negligible additional
memory requirements. The proposed forward in time unsteady adjoint approach is ap-
plied in the case of 1D Burgers equation, including random source terms, in an attempt
to mimic the flows obtained by models such as DES and LES.

2 THE UNSTEADY ADJOINT EQUATIONS

2.1 The adjoint approach

In control theory, an optimization problem is defined as a problem in which the target is
to find the optimal values of the so-called control variables bi, i=1, ..., I that minimize an
objective function F . F depends on bi directly and indirectly through the state variables
Um, m = 1, ...,M (F = F (Uk(bi), bi)), that satisfy the state equations Rm(Uk(bi), bi) =
0, m = 1, ...,M . The sensitivity derivatives of F with respect to bi are computed using
the chain rule

dF

dbi

=
∂F

∂bi

+
∂F

∂Uk

dUk

dbi

(1)

where the sensitivity fields dUk

dbi

are computed by solving the equations

dRm

dbi

=
∂Rm

∂bi

+
∂Rm

∂Uk

dUk

dbi

= 0 (2)

Eqs. 1 and 2 constitute the so-called direct differentiation approach and its cost scales
with the number of control variables. Alternatively, one may refer to the adjoint approach
[2, 1], This is based on the solution of the adjoint equations

∂F

∂Uk

+ Ψm

∂Rm

∂Uk

= 0 (3)

for Ψm and the computation of the objective function sensitivities from the expression

dF

dbi

=
∂F

∂bi

+ Ψm

∂Rm

∂bi

(4)

The cost of the adjoint approach is independent of the number of design variables, being
almost equal to that of solving the state equations.

2.2 The conventional unsteady adjoint approach

The advantage of the adjoint approach over direct differentiation (and finite differences)
that the objective function sensitivity derivatives are computed at a cost independent of
the number of control variables exists either for steady or unsteady problems. However,
in the case of unsteady problems the adjoint formulation introduces extra implications as
discussed below.
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The unsteady state equations may be expressed using, without loss in generality, a
first-order forward temporal discretization, as follows

R1
m = U1

m − Ūm = 0

Rn
m = Un

m − Un−1
m + P n−1

m ∆t = 0, n = 2, ..., N (5)

where P n−1
m is the spatial residual at time n− 1 and N is the number of total time steps.

The state variables at time n = 1 are given as an initial condition and the state variables
at all time steps are computed explicitly marching forward in time.

Assuming a time-dependent objective function, given by F̂ =
∑N

n=1 F n, its derivatives
with respect to the control variables, using the direct-differentiation approach, are given
by

dF̂

dbi

=
N

∑

n=1

(

∂F n

∂bi

+
∂F n

∂Un
k

dUn
k

dbi

)

(6)

where the sensitivities
dUn

k

dbi

are computed by solving the equations derived by differentiat-
ing eq. 5, as follows

dU1
m

dbi

−

dŪm

dbi

= 0

dUn
m

dbi

−

dUn−1
m

dbi

+

(

∂P n−1
m

∂Un−1
k

dUn−1
k

dbi

+
∂P n−1

m

∂bi

)

∆t, n = 2, ..., N (7)

Although the direct differentiation equations are solved marching forward in time, requir-
ing, thus, no additional memory, their cost scales with the number of design variables.

Alternatively, one may solve the unsteady adjoint equations, given by

Ψn
k − Ψn+1

k + Ψn+1
m

∂P n
m

∂Un
k

∆t +
∂F n

∂Uk

= 0, 1 < n < N − 1 (8)

ΨN
m +

∂FN

∂Uk

= 0, n = N (9)

and the sensitivity derivatives of the objective function are computed by the expression

δFaug

δbi

=
N

∑

n=1

∂F n

∂bi

− Ψ1
m

dŪm

dbi

+
N−1
∑

n=1

Ψn+1
m

∂P n
m

∂bi

∆t (10)

The major problem that arises in the unsteady adjoint approach, that does not exist in the
steady adjoint, is clearly deduced by observing eqs. 8 and 9. Unlike the state equations
which can be solved forward in time, starting from the initial state condition, the adjoint
equations should be solved backward in time. Eq. 9 should be first solved for ΨN

m and
then eq. 8 is solved marching backwards in time from n = N − 1 to n = 1.
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During this backward in time solution of the unsteady adjoint equations, the state
solution at each time step should be available. Thus, since the state equations have been
solved marching forward in time, the state variables at all time steps should have been
stored. This fact increases the memory requirements of the unsteady adjoint approach
too much, in comparison to the memory required if only the state equations are to be
solved and average quantities (objective functions) are to be computed.

2.3 The unsteady adjoint in matrix form

In order to establish an algorithm for the solution of the unsteady adjoint equations
forward in time, a different view of the unsteady adjoint equations should be used. The
derivation of eqs. 5 with respect to the control parameters yields

dR1
k

dbi

=
dU1

k

dbi

−

dŪk

dbi

= 0

dRn
k

dbi

=
∂Un

k

∂bi

−

∂Un−1
k

∂bi

+
∂P n−1

k

∂Un−1
m

dUn−1
m

dbi

∆t +
∂P n−1

k

∂bi

∆t = 0, n = 2, ..., N (11)

or in matrix form (given for 5 time steps for demonstration purposes) as

















1 0 0 0 0
∂P 1

k

∂U1
m

∆t − δkm δkm 0 0 0

0
∂P 2

k

∂U2
m

∆t − δkm δkm 0 0

0 0
∂P 3

k

∂U3
m

∆t − δkm δkm 0

0 0 0
∂P 4

k

∂U4
m

∆t − δkm δkm

































∂U1

k

∂bi

∂U2

k

∂bi

∂U3

k

∂bi

∂U4

k

∂bi

∂U5

k

∂bi

















=

















∂Ūk

∂bi

−

∂P 1

k

∂bi
∆t

−

∂P 2

k

∂bi
∆t

−

∂P 3

k

∂bi
∆t

−

∂P 4

k

∂bi
∆t

















(12)

where δkm is the Kronecker symbol and
∂P l

k

∂U l
m

depends on the spatial discretization. The

unsteady direct differentiation equations are thus given by the form AŨ = f













A11 0 0 0 0
A21 A22 0 0 0
0 A32 A33 0 0
0 0 A43 A44 0
0 0 0 A54 A55

























Ũ1

Ũ2

Ũ3

Ũ4

Ũ5













=













f1

f2

f3

f4

f5













(13)

offering the possibility to be solved forward in time; the system A11Ũ1 = f1 is firstly
solved for Ũ1, then the system A21Ũ1 + A22Ũ2 = f2 is solved for Ũ2 and so forth. Thus,
the direct differentiation equations can be solved simultaneously in time with the state
equations and, thus, they do not require the storage of all state variables on which the
matrices Aij and vectors fi depend.
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On the other hand, the adjoint equations are given by the expression AT Ψ = g:












AT
11 AT

21 0 0 0
0 AT

22 AT
32 0 0

0 0 AT
33 AT

43 0
0 0 0 AT

44 AT
54

0 0 0 0 AT
55

























Ψ1

Ψ2

Ψ3

Ψ4

Ψ5













=













g1

g2

g3

g4

g5













(14)

Eqs. 14 cannot be solved forward in time. One should start by solving the system
AT

55Ψ5 = g5 for Ψ5, then solve the system AT
44Ψ4 = AT

54Ψ5 = g4 for Ψ4 and so forth. Thus,
since the state equations are solved forward in time, one should either store all state
variables, recompute them at each backward step or, optimally, choose and store some
intermediate state variables at some checkpoints to compensate between computational
cost and memory requirement.

3 FORWARD IN TIME ADJOINT

The proposed algorithm for the solution of the unsteady adjoint equations consists
of two phases. During the first phase, the adjoint equations are solved backwards in
time. However, instead of solving the exact adjoint equations (eq. 14), the approximate
equations ĀT Ψ = ḡ are solved, written as follows













ĀT
11 ĀT

21 0 0 0
0 ĀT

22 ĀT
32 0 0

0 0 ĀT
33 ĀT

43 0
0 0 0 ĀT

44 ĀT
54

0 0 0 0 ĀT
55

























Ψ∗

1

Ψ∗

2

Ψ∗

3

Ψ∗

4

Ψ∗

5













=













ḡ1

ḡ2

ḡ3

ḡ4

ḡ5













(15)

where the matrices ĀT
ij and the vectors ḡi are the quantities AT

ij and gi computed using
the average in time values of the state variables. By using the average quantities instead
of the exact in time ones, the storage of the state solutions at each and every time
step is avoided; only an on-line averaging of the state solutions in time take places and,
thus, the storage of an average state field is only required, whose memory requirement is
almost that of an equivalent steady state solution. The outcome of this first phase of the
proposed approach, which is based on that simple averaging of the state variables, is the
computation of the approximate adjoint solution Ψ∗

1 at the first time step.
Now that an initial condition for adjoint variables is available, a forward in time sweep-

ing and solution of the unsteady adjoint equations is viable. The exact unsteady adjoint
equations are now solved forward in time using the approximate initial solution Ψ∗

1












AT
11 AT

21 0 0 0
0 AT

22 AT
32 0 0

0 0 AT
33 AT

43 0
0 0 0 AT

44 AT
54

0 0 0 0 AT
55

























Ψ∗

1

Ψ∗∗

2

Ψ∗∗

3

Ψ∗∗

4

Ψ∗∗

5













=













g1

g2

g3

g4

g5













(16)
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for Ψ∗∗

2 , Ψ∗∗

3 , Ψ∗∗

4 and Ψ∗∗

5 , solving the first equation of the system 16 for Ψ∗∗

2 , the second
for Ψ∗∗

3 and so forth.
During this forward sweeping, the exact values of the state variables are used to com-

pute AT
ij and gi and not the averaged ones used in the first phase. Attention should be

payed here, because these variables were not stored during the first forward solution of
the state equations, in contrast to the conventional approach where the state variables are
stored at each time step (or at some time steps in the case of a checkpointing approach).
Thus, in this proposed algorithm, the unsteady state equations are solved again, simul-
taneously to the forward in time solution of eq. 16, providing in real time the required
quantities AT

ij and gi.
The total computational cost is almost that of 4 equivalent unsteady flow solutions,

i.e. four times as much as the cost for solving the unsteady state equations, which cor-
responds to a twice as much as the cost of the solution of the exact steady state and
adjoint equations, eliminating completely (in contrast to checkpointing techniques) the
requirement for additional storage.

4 APPLICATION TO THE 1D BURGERS EQUATION

In this section, the proposed algorithm is applied to the one-dimensional Burgers equa-
tion

R(u) =
∂u

∂t
+

1

2

∂(u2)

∂x
= s (17)

with the initial condition

u = ūsin(πx) (18)

The forward Euler temporal discretization and first-order upwind spatial discretization of
eqs. 17 and 18 gives

R1
k = U1

k − Ūsin(πxk) = 0, k = 1, ..., K

Rn
k =

Un
k − Un−1

k

∆t
+

(Un−1
k )2

− (Un−1
k−1 )2

2∆x
= Sn−1

k , n = 2, ..., N, k = 1, ..., K (19)

taking the form of eq. 5 for P n−1
k =

(Un−1

k
)2−(Un−1

k−1
)2

2∆x
− Sn−1

k

Two cases are investigated: the first one assumes that there is not a source term in the
Burgers equations, i.e. s = 0 and the second one uses a source term given by

s = s̄sin(πx)rand() (20)

where rand() is a random function chosen to take values between −0.4 and 0.6.
For the first case, the solution of the unsteady state equations is illustrated in fig. 1

where the distribution of the state variables over space and time is plotted. A linear
distribution of the state variables over time may be observed.
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Figure 1: Case 1: Distribution over space and time of the state variable.
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Figure 2: Case 1: Distribution over space and time of the adjoint variable computed using the solution
of the unsteady adjoint equations based on unconditionally modified adjoint equations (left) and local in
time solution (right) of the unsteady adjoint equations.

The solution of the unsteady adjoint equations for this case, using various different
methods exposed in the previous sections is shown in the following figures and compared
to the exact adjoint solution that is obtained by solving backwards in time the unsteady
adjoint equations.

In fig. 2, left, the adjoint solution based on an unconditionally modified adjoint ap-
proach (elimination of the first column of the matrix of eq. 14) is compared to the exact
adjoint approach. The comparison shows that even in this simple unsteady example, in
which the state solution is linear with time, this approach fails to provide acceptable ad-
joint variable distributions. This is also the case for the second examined adjoint approach
that is based on the local in time solution of the unsteady adjoint equations, fig. 2, right,
using in this case three steps and zeroing the adjoint variables at each sub-interval.

The application of the proposed algorithm is illustrated in fig. 3. In the left, only the
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Figure 3: Case 1: Distribution over space and time of the adjoint variable computed using the solution
of the unsteady adjoint equations based on averaging of the flow solution (left) and and the forward in
time solution of the unsteady adjoint equations (right).
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Figure 4: Case 2: Distribution over space and time of the state variable (left), distribution over space
of the state variable for n = T/2 (top-right) and distribution over time of the state variable for k = K/2
(bottom-right).

first part of the proposed algorithm is applied, which is based on the backward solution of
the unsteady adjoint equations based on averaged values of the state variables. It seems
that in this linear in time case, the averaging technique is enough to compute satisfactory
adjoint variable distribution and the gain from the second step of this algorithm in the
accuracy of the adjoint variable values is small.

The results are different in the second examined case where a source term is added
to the Burgers equation. A random in time source term is added in order to resemble

9



Dimitrios I. Papadimitriou

 0  10  20  30  40  50  60  70

 0
 2

 4
 6

 8
 10

 12
 14

 16

-40
-30
-20
-10

 0
 10
 20
 30
 40

adjoint

exact
modified

t

x

adjoint

 0  10  20  30  40  50  60  70

 0
 2

 4
 6

 8
 10

 12
 14

 16

 0
 5

 10
 15
 20
 25
 30
 35
 40

adjoint

exact
LiT

t

x

adjoint

Figure 5: Case 2: Distribution over space and time of the adjoint variable computed using the solution
of the unsteady adjoint equations based on unconditionally modified adjoint equations (left) and local in
time solution of the unsteady adjoint equations (right).
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Figure 6: Case 2: Distribution over space and time of the adjoint variable computed using the solution
of the unsteady adjoint equations based on averaging of the flow solution (left) and forward in time
solution of the unsteady adjoint equations (right).

(as much as possible for a 1D example) the URANS or LES/DES models for unsteady
turbulent flow analysis. This time, it can be seen from fig. 4 that the state solution is
not linear, not only in space but in time as well.

The first conclusion drawn from the comparison of the different algorithms for the
solution of the adjoint approach approves that the first two approaches, namely the un-
conditionally modified adjoint approach and the local in time adjoint approach fail to
compute accurate adjoint variable distributions, fig. 5. This statement is in total agree-
ment with the previous simpler case.
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Figure 7: Case 2: Distribution over space of the adjoint variable for n = T/2 (left) and distribution
over time of the adjoint variable for k = K/2 (right), computed using the aforementioned methods.

However, the observation of fig. 6 leads to a different conclusion. The application of
only the first step of the proposed adjoint approach is not adequate to provide accurate
enough adjoint variable solution, a lot different than the exact backward in time adjoint
solution, fig. 6, left. Moreover, the application of the second step of the proposed al-
gorithm where the adjoint variables are recomputed forward in time based on the initial
solution provided by the first step, leads to quite accurate prediction of the adjoint field,
fig. 6, right, (and fig. 7 for better view of the comparison).

This outcome proves that in such cases the full proposed algorithm should be applied
and “pay” the additional computational cost (twice the cost of the conventional approach),
to avoid completely the huge memory requirements of the conventional approach, with
acceptable accuracy of the computed adjoint fields.

5 CONCLUSIONS

A new iterative algorithm was proposed for the solution of the unsteady adjoint equa-
tions forward in time. The algorithm consists of two phases; a backwards sweeping phase
based on averaged flow quantities and a forward sweeping phase, based on the solution
found from the first phase. The algorithm proved to compute very accurate adjoint fields
in the case of the Burgers equation, comparing to other approaches, especially in the case
of a random source term that mimics the turbulent flows modeled by high fidelity (DES,
LES) CFD models, yielding promises for the optimization based on those large-scale mod-
els.
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