
11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)
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Abstract. Direct numerical simulations (DNS) of the incompressible Navier-Stokes equa-
tions are limited to relatively low-Reynolds numbers. Therefore, dynamically less complex
mathematical formulations are necessary for coarse-grain simulations. Regularization and
eddy-viscosity models for Large-Eddy Simulation are examples thereof. They rely on dif-
ferential operators that should be able to capture well different flow configurations (lam-
inar and 2D flows, near-wall behavior, transitional regime...). Most of them are based on
the combination of invariants of a symmetric second-order tensor that is derived from the
gradient of the resolved velocity field. In the present work, they are presented in a frame-
work where all the models are represented as a combination of elements of a 5D phase
space of invariants. In this way, new models can be constructed by imposing appropriate
restrictions in this space. Moreover, since the discretization errors may play an important
role, a novel approach to discretize the viscous term with spatially varying eddy-viscosity
is used. It is based on basic operators; therefore, the implementation is straightforward
even for staggered formulations. The performance of the proposed methods will be as-
sessed by means of direct comparison to DNS reference results.

1 INTRODUCTION

We consider the numerical simulation of the incompressible Navier-Stokes (NS) equa-
tions. In primitive variables they read

∂tu+ C(u,u) = Du−∇p, ∇ · u = 0, (1)

where u denotes the velocity field, p represents the kinematic pressure, the non-linear
convective term is given by C(u, v) = (u · ∇) v, and the diffusive term reads Du = ν∆u,
where ν is the kinematic viscosity. Direct simulations at high Reynolds numbers are not

1



F.Xavier Trias, Andrey Gorobets, C.David Pérez-Segarra and Assensi Oliva

feasible because the convective term produces far too many scales of motion. Hence, in the
foreseeable future, numerical simulations of turbulent flows will have to resort to models
of the small scales. The most popular example thereof is the Large-Eddy Simulation
(LES). Shortly, LES equations result from filtering the NS Eqs.(1) in space

∂tu+ C(u,u) = Du−∇p−∇ · τ(u) ; ∇ · u = 0, (2)

where u is the filtered velocity and τ(u) is the subgrid stress tensor and aims to ap-
proximate the effect of the under-resolved scales, i.e. τ(u) ≈ u⊗ u− u ⊗ u. Then, the
closure problem consists on replacing (approximating) the tensor u⊗ u with a tensor
depending only on u (and not u). Because of its inherent simplicity and robustness, the
eddy-viscosity assumption is by far the most used closure model

τ(u) ≈ −2νeS(u), (3)

where νe denotes the eddy-viscosity. Notice that τ(u) is considered traceless without the
loss of generality, because the trace can be included as part of the pressure, p. Following
the same notation than in [1], the eddy-viscosity can be modeled in a natural way as
follows

νe = (Cmδ)
2Dm(u), (4)

where Cm is the model constant, δ is the subgrid characteristic length and Dm is a
differential operator associated with the model. This provides a framework where most
of the existing eddy-viscosity models can be represented [1].

Alternatively, regularizations of the non-linear convective term basically reduce the
transport towards the small scales: the convective term in the NS Eqs.(1), C, is replaced
by a smoother approximation, C̃,

∂tuǫ + C̃(uǫ,uǫ) = Duǫ −∇pǫ, ∇ · uǫ = 0. (5)

The first outstanding approach in this direction goes back to Leray [2]. The Navier-
Stokes-α model also forms an example thereof [3]. More recently, a family of regularization
methods that exactly preserve the symmetry and conservation properties of the convective
term was proposed in [4]. In this way, the production of smaller and smaller scales of
motion is restrained in an unconditionally stable manner. A very recent application of this
regularization approach can be found in [5]. The criterion the determine the local filter
length, ǫ, is also based on a differential operator. Like most of the eddy-viscosity models
for LES, they are based on the combination of invariants of a symmetric second-order
tensor that is derived from the gradient of the resolved velocity field.

In this context, a framework where all the models are represented as a combination of
elements of a 5D phase space of invariants is presented. The basic theory together with
some useful relations between invariants is presented in the next section. Then, a list of

2



F.Xavier Trias, Andrey Gorobets, C.David Pérez-Segarra and Assensi Oliva

eddy-viscosity models for LES is represented within this framework in Section 3. In this
way, new models can be constructed by imposing appropriate restrictions in this space.
This is addressed in Section 4 with special emphasis to the near-wall behavior. Moreover,
since the discretization errors may play an important role a novel approach to discretize
the viscous term with spatially varying eddy-viscosity is presented in Section 5. It is based
on basic operators; therefore, the implementation is straightforward even for staggered
formulations. Finally, relevant results are summarized and conclusions are given.

2 THEORY

The essence of turbulence are the smallest scales of motion. They result from a subtle
balance between convective transport and diffusive dissipation. Numerically, if the grid is
not fine enough, this balance needs to be restored by a turbulence model. The success of a
turbulence model depends on the ability to capture well this (im)balance. In this regard,
many turbulence eddy-viscosity models for LES have been proposed in the last decades
(see [6], for a review). In order to be frame invariant, most of them rely on differential
operators that are based on the combination of invariants of a symmetric second-order
tensor (with the proper scaling factors). To make them locally dependent such tensors are
derived from the gradient of the resolved velocity field, G ≡ ∇u. This is a second-order
traceless tensor, tr(G) = ∇ · u = 0. Therefore, it contains 8 independent elements and it
can be characterized by 5 invariants (3 scalars are required to specify the orientation in
3D). Following the same criterion that in [7, 8], this set of five invariants can be defined
as follows

{QG, RG, QS, RS, V
2}, (6)

where QA = 1/2{tr2(A)−tr(A2)} and RA = det(A) = 1/6{tr3(A)−3tr(A)tr(A2)+2tr(A3)}
represent the second and third invariants of the second-order tensor A, respectively.
Moreover, the first invariant of A will be denoted as PA = tr(A). Notice that if A is
traceless, tr(A) = 0, these formulae reduce to PA = 0, QA = −1/2tr(A2) and RA =
det(A) = −1/3tr(A3), respectively. Finally, V 2 = tr(S2Ω2), where S = 1/2(G + GT ) and
Ω = 1/2(G−GT ) are the symmetric and the skew-symmetric parts of the gradient tensor,
G. Notice that all these tensors are also traceless, tr(S) = tr(Ω) = tr(G) = 0. The
following relations between their principal invariants can be easily obtained

PG = PS = PΩ = 0, (7)

QG = QS +QΩ, (8)

RG = RS + tr(Ω2
S), RΩ = 0. (9)

Since the pioneering works in the early 90s [7, 9, 10] these invariants have been stud-
ied from both theoretical and experimental/numerical point-of-views. For the so-called
“restricted Euler equations” (where the pressure and viscous terms are neglected), exact
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transport equations for the invariants can be found (see [8], for instance). Namely,

dQG

dt
= −3RG;

dRG

dt
=

2

3
Q2

G, (10)

dQS

dt
= −2RS − RG;

dRS

dt
=

2

3
QGQS +

1

4
V 2;

dV 2

dt
= −16

3
(RS −RG)QG. (11)

This defines a complete dynamical system in the 5D phase space defined in (6). Despite the
above-mentioned simplifications some important features observed in isotropic turbulence
can be reproduced by this system. Namely, the preferential alignment of the vorticity
vector, ω = ∇ × u, with the eigenvector corresponding to the intermediate eigenvalue
of S and the tendency of this tensor to have one negative and two positive eigenvalues.
On the other hand, numerical and experimental studies for different configurations have
revealed the “universal” teardrop shape of the joint probability density function of RG

and QG.

The identification of coherent structures is another example where the invariants play
an important role. For instance, the invariant QΩ = 1/4|ω|2 is proportional to the
enstrophy density; therefore, it identifies tube-like structures with high vorticity. The
invariant QS = −1/2(S : S) is proportional to the local rate of viscous dissipation, ε =
2νS : S. Notice that QΩ ≥ 0 whereas QS ≤ 0 and these two invariants are related with
the invariant QG with the identity (8); hence, positive values of the invariant QG > 0 are
related with areas where enstrophy dominates whereas QG < 0 implies that the viscous
dissipation dominates. The former correspond to vortex-like structures and justifies the
widely adopted QG-criterion for flow visualization of turbulence. It is remarkable the role
that these invariants play in other areas of research such as the visualization of tensor
fields [11], in particular in the analysis of diffusion tensor magnetic resonance images
(see [12], for instance).

Starting from the classical Smagorinsky model [13], most of the eddy-viscosity models
for LES are based on invariants of second-order tensors that are derived from the gradient
tensor, G. Therefore, it seems natural to re-write them in terms of the 5D phase space
defined in (6). This is addressed in the next section. However, for convenience some other
important invariants (or relations) in the context of eddy-viscosity models for LES are
defined before. Namely,

tr(GGT ) = tr(S2)− tr(Ω2) = 2(QΩ −QS), (12)

tr(S2
Ω

2) = 1/8(tr(G4)− tr(GGT
GG

T )) = 1/8(2Q2
G − tr(GGT

GG
T )), (13)

Z2 = V 2 − 2QSQΩ, (14)

tr(Ã2) = tr(A2)− 1/3tr2(A), (15)

where Ã = A − 1/3tr(A) denotes the traceless part of tensor A. In this context, it is
also useful to define the three eigenvalues, λ1 ≥ λ2 ≥ λ3 of A. They are solutions of the

4



F.Xavier Trias, Andrey Gorobets, C.David Pérez-Segarra and Assensi Oliva

characteristic equation

det(λI− A) = λ3 − PAλ
2 +QAλ−RA = 0, (16)

where
PA = λ1 + λ2 + λ3; QA = λ1λ2 + λ1λ3 + λ2λ3; RA = λ1λ2λ3, (17)

whereas for traceless tensors it simplifies to

P
Ã
= 0; Q

Ã
= −1/2 (λ1λ1 + λ2λ2 + λ3λ3) ; R

Ã
= λ1λ2λ3. (18)

3 A UNIFIED FRAMEWORK FOR EDDY-VISCOSITY MODELS

In the next subsections, different eddy-viscosity models for LES are re-written in terms
of the list of five invariants given in (6). For the sake of clarity, sometimes the invariants
QΩ and Z2 are also used. Notice that they can always be written in terms of QS, QG and
V 2 via the identities (8) and (14), respectively. Starting from the classical Smagorinsky
model, they are presented in chronological order.

3.1 Smagorinsky model

The Smagorinsky model [13] can be written in terms of the above-defined invariants
as follows

νSmag
e = (CSδ)

2|S(u)| = 2(CSδ)
2(−QS)

1/2, (19)

where CS is the Smagorinsky constant, δ is the filter length (related with the local grid
size) and |S| = (2S : S)1/2. Notice that the Frobenius norm of S is S : S = tr(S2) = −2QS.

3.2 WALE model

The wall-adapting local eddy viscosity (WALE) model was originally proposed in [14].
Following the same notation than the original paper, it is based on the second invariant
of the traceless part of the symmetric tensor Sd = 1/2(G2 + (G2)T ) = S2 + Ω2,

Q
S̃d

= −1/2tr(S̃2
d). (20)

Then, using the identity (15) we can write the tr(S̃2
d) in terms of tr(S2

d) and tr(Sd).
Recalling that Sd = S2 + Ω2, and applying the Caley-Hamilton theorem we obtain

tr(Sd) = tr(S2) + tr(Ω2) = −2(QS +QΩ) = −2QG, (21)

tr(S2
d) = tr(S4) + tr(Ω4) + 2tr(S2

Ω
2) = 2(Q2

S
+Q2

Ω
+ V 2). (22)

Then, plugging Eqs.(21) and (22) into Eq.(20) leads to

Q
S̃d

= −1/2tr(S̃2
d) = −1/2tr(S2

d) + 1/6tr2(Sd) (23)

= −(Q2
S +Q2

Ω + V 2) + 2/3Q2
G. (24)
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However, at this point it is more appropriate to write it in terms of the invariant Z2

defined in Eq.(14), i.e.
Q

S̃d
= −1/3Q2

G − Z2. (25)

Finally, in the WALE model the eddy-viscosity is given by

νW
e = (CW δ)2

(−2Q
S̃d
)3/2

(−2QS)5/2 + (−2Q
S̃d
)5/4

, (26)

or, in terms of basic invariants,

νW
e = (CW δ)2

(2/3Q2
G
+ Z2)3/2

(−2QS)5/2 + (2/3Q2
G
+ Z2)5/4

. (27)

3.3 Vreman’s model

The Vreman’s model [15] is based on the ratio between the second and the first invari-
ants of the tensor GGT . With the help of the identity (12), the latter can be written as
follows

PGGT = tr(GGT ) = 2(QΩ −QS), (28)

whereas the former is given by QGGT = 1/2{tr2(GGT )−tr(GGTGGT )}. Then, with the help
of the identities (12) and (13), QGGT can be expressed in terms of more basic invariants

QGGT = 2(QΩ −QS)
2 −Q2

G
+ 4V 2, (29)

and simplified further using (8) and (14)

QGGT = Q2
G
+ 4Z2. (30)

In the the Vreman’s model the eddy-viscosity is given by the following expression

νV r
e = (CV rδ)

2 (QGGT /PGGT )1/2 . (31)

Finally, plugging identities (28) and (30) leads to

νV r
e = (CV rδ)

2

(
Q2

G
+ 4Z2

2(QΩ −QS)

)1/2

. (32)

3.4 RS-based model

All the above-described models do not depend on the third invariants, RS or RG.
Recently, Verstappen [16] proposed an eddy viscosity model that is based on the third
invariant of S. It reads,

νR
e = (CRδ)

2 |RS|
−QS

, (33)

therefore, it is already expressed in terms of basic invariants of S.
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Invariants
QG RG QS RS V 2 QΩ Z2

Wall-behavior O(y2) O(y3) O(y0) O(y1) O(y0) O(y0) O(y2)
Units [T−2] [T−3] [T−2] [T−3] [T−4] [T−2] [T−4]

Models
Smagorinsky WALE Vreman’s RS-based σ-model

Eq.(19) Eq.(27) Eq.(32) Eq.(33) Eq.(34)
Wall-behavior O(y0) O(y3) O(y1) O(y1) O(y3)

Table 1: Top: near-wall behavior and units of the five basic invariants in the 5D phase space given in (6)
together with the invariants QΩ and Z2 defined in (8) and (14), respectively. Bottom: near-wall behavior
of the Smagorinsky, the WALE, the Vreman’s, the RS-based and the σ-models.

3.5 σ-model

Even more recently, in [1] a new eddy-viscosity model was proposed. In this case, it is
based on the singular values of the tensor G. Namely,

νσ
e = (Cσδ)

2σ3(σ1 − σ2)(σ2 − σ3)

σ2
1

, (34)

where σi are the three singular eigenvalues of G, i.e. σi =
√
λi where λi is an eigenvalue of

GGT , and σ1 ≥ σ2 ≥ σ3. The eigenvalues of GGT can be easily related with its invariants
using Eqs.(17). The first two invariants, PGGT and QGGT are given by the identities (28)
and (30), respectively. Finally, the third invariant of GGT follows straightforwardly

RGGT = det(GGT ) = det(G)det(GT ) = R2
G. (35)

Hence, the formula for the eddy-viscosity given in Eq.(34) can be written in terms of the
following four basic invariants: QG, QS, V

2 and RG.

4 NEAR-WALL BEHAVIOR AND OTHER FEATURES

The major drawback of the classical Smagorinsky model (see Eq. 19) is that the dif-
ferential operator it is based on does not vanish in near-wall regions (see Table 1). First
attempts to overcome this inherent problem of the Smagorinsky model made use of wall
functions. However, the first outstanding improvement was the dynamic procedure pro-
posed by Germano et al. [17] in the early 90s. Alternatively, it is possible to build models
based on invariants that do not have this limitation. Examples thereof are the WALE,
the Vreman’s, the RS-based and the σ-model described in the previous section.

At this point it is interesting to observe that new models can be derived by imposing
restrictions on the differential operators they are based on. For instance, let us consider
models that are based on the invariants of the tensor GGT

νe = (CMδ)2P p
GGTQ

q
GGTR

r
GGT , (36)
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Figure 1: Solutions for the linear system of Eqs.(37) for s = 1 (dashed line) and s = 3 (solid line). Each
(r, q, p) solution represents an eddy-viscosity model of the form given in Eq.(36).

where PGGT , QGGT and RGGT are given by Eqs.(28), (30) and (35), respectively. Then,
from the asymptotic near-wall behavior of the basic invariants (see Table 1) it is easy to
deduce that they scale O(y0), O(y2) and O(y6), and their units are [T−2], [T−4] and [T−6],
respectively. Since the differential operator, [Dm(u)] = [T−1] the exponents have the
following restrictions

−6r − 4q − 2p = −1; 6r + 2q = s, (37)

where s is the slope for the asymptotic near-wall behavior, i.e. O(ys). Solutions for
q(p, s) = (1 − s)/2 − p and r(p, s) = (2s − 1)/6 + p/3 are displayed in Figure 1. The
Vreman’s model given in Eq.(31) corresponds to the solution with s = 1 (see Table 1) and
r = 0. However, it seems more appropriate to look for solutions with the proper near-wall
behavior, i.e. s = 3 (solid lines in Figure 1). Restricting ourselves to solutions involving
only two invariants of GGT we find three new models,

νS3QP
e = (Cs3qpδ)

2P
−5/2

GGT Q
3/2

GGT , (38)

νS3RP
e = (Cs3rpδ)

2P−1
GGTR

1/2

GGT , (39)

νS3RQ
e = (Cs3rqδ)

2Q−1
GGTR

5/6

GGT . (40)

These three solutions are also represented in Figure 1. Notice that with this notation the
Vreman’s would be named S1QP model.

5 NUMERICAL METHODS FOR EDDY-VISCOSITY MODELS FOR LES

The incompressible NS Eqs.(1) with constant physical properties are discretized on a
staggered grid using a fourth-order symmetry-preserving discretization [18]. Doing so, the
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symmetry properties of the underlying differential operators are preserved: the convective
operator, C (us), is represented by a skew-symmetric matrix and the diffusive operator, D,
by a symmetric positive-definite matrix. In short, the temporal evolution of the spatially
discrete staggered velocity vector, us ∈ R

m, is governed by the following operator-based
finite-volume discretization of Eqs.(1)

Ωs
dus

dt
+ C (us)us + Dus −M

T
pc = 0s, Mus = 0c, (41)

where pc ∈ R
n is the cell-centered pressure scalar field. The dimension of these vectors,

n and m, are the number of control volumes and faces on the computational domain,
respectively. The sub-indices c and s refer to whether the variables are cell-centered
or staggered at the faces. The diagonal matrix, Ωs ∈ R

m×m, describes the sizes of the
staggered control volumes and the convective flux is discretized as in [18]. The resulting
convective matrix, C (us) ∈ R

m×m, is skew-symmetric, i.e. C (us) + CT (us) = 0. The
skew-symmetry of C (us) implies that

C (us) vs ·ws = vs · CT (us)ws = −vs · C (us)ws, (42)

for any discrete velocity vectors us (if Mus = 0c), vs and ws. Then, the evolution of the
discrete energy, ‖us‖2 = us · Ωsus, is governed by

d

dt
‖us‖2 = −us ·

(
D + D

T
)
us < 0, (43)

where the convective and the pressure gradient contributions cancel because of Eq.(42)
and the incompressibility constraint, Mus = 0c, respectively. Therefore, even for coarse
grids, the energy of the resolved scales of motion is convected in a stable manner, i.e. the
discrete convective operator transports energy from a resolved scale of motion to other
resolved scales without dissipating any energy, as it should be from a physical point-of-
view. This discretization has already been successfully tested for many direct numerical
simulations (DNS). The most recent example thereof can be found in [5] where a DNS of
turbulent flow in air-filled differentially heated cavity was carried out.

5.1 Discretization of the viscous term with spatially varying eddy-viscosity

In this work we propose to apply the same ideas to discretize the eddy-viscosity
model (3) for LES (2). In this case, in general the (eddy-)viscosity, νe, is not constant
neither on space and time. To obtain the Eq.(1) (with ν replaced by ν+νe) from Eqs.(2)-
(3) with constant νe notice that 2∇ · S(u) = ∇ · ∇u + ∇ · (∇u)T and recall the vector
calculus identity ∇ · (∇u)T = ∇(∇ · u) to cancel out the second term. However, for
non-constant νe, the discretization of ∇ · (νe(∇u)T ) needs to be addressed. This can be
quite cumbersome especially for staggered formulations.

The standard approach consists on discretizing the term ∇ · (νe(∇u)T ) directly. How-
ever, this implies many ad hoc interpolations that tends to smear the eddy-viscosity, νe.
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This may (negatively?) influence the performance of eddy-viscosity especially near the
walls. Instead, an alternative form was proposed in [19]. Shortly, with the help of vector
calculus it can be shown that

∇ · (νe(∇u)T ) = ∇(∇ · (νeu))−∇ · (u⊗∇νe). (44)

Then, recalling that the flow is incompressible, the second term in the right-hand-side can
be written as ∇ · (u⊗∇νe) = (u · ∇)∇νe = C(u,∇νe), i.e.

∇ · (νe(∇u)T ) = ∇(∇ · (νeu))− C(u,∇νe). (45)

This provides an alternative form to construct consistent approximations of Eqs.(2)-(3)
without introducing new interpolation operators. Namely, the first term in the right-
hand-side of Eq.(45) can be discretized as follows

−M
T
Ω

−1
c Mũs where [ũs]f = [νs]f [us]f , (46)

where Ωc ∈ R
n×n is a diagonal matrix containing the sizes of the cell-centered control

volumes and [νs]f is the value of νe(x, t) evaluated at the face f . This term, like the
continuous counterpart, (i) vanishes for constant νe (Mũs = νeMus = 0c) and (ii) its
contribution to the total kinetic energy is also null (uT

s M
T
Ω

−1
c Mũs = (Mus)

T
Ω

−1
c Mũs =

0). Regarding the second term, C(u,∇νe), it can be discretized as follows

C (us) (−Ω
−1
s M

T
νc), (47)

where νc ∈ R
n is a cell-centered vector containing the values of νe(x, t). In this case,

it also vanishes for constant νe (MT
νc = νeM

T1c = 0s). We can conclude that the
alternative form given in Eq.(45) discretized by the expressions given in (46) and (47) is
a consistent discretization of the term ∇ · (νe(∇u)T ) without introducing new discrete
operators. Moreover, in the case with constant νe these two terms vanish. In summary,
combining Eqs.(46) and (47), the term ∇ · (νe(∇u)T ) can be discretized as follows

−M
T
Ω

−1
c Mũs

︸ ︷︷ ︸

≈∇(∇·(νeu))

−C (us) (−Ω
−1
s M

T
νc)

︸ ︷︷ ︸

≈C(u,∇νe)

. (48)

From a numerical point-of-view, the most remarkable property of this form is that it can be
straightforwardly implemented by simply re-using operators that are already available in
any code. Moreover, for constant viscosity, formulations constructed via Eq.(48) become
identical to the original formulation because both terms exactly vanish. Numerical results
showing the capability of the method to compute fourth-order accurate approximations
on staggered Cartesian grids were presented in [19] (see also Figure 2). Moreover, the
computational costs of evaluating Eq.(45) can be significantly reduced by simply ignoring
the first-term in the right-hand-side, ∇(∇ · (νeu)). Since it is a gradient of a scalar field,
this term can be absorbed into the pressure, π = p−∇ · (νeu).
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Figure 2: Norm of the local truncation error versus the maximum step-size. Results correspond to the
4th-order staggered discretization on structured Cartesian grids. Details can be found in [19].

6 CONCLUDING REMARKS AND FUTURE RESEARCH

In the present work, a general framework for eddy-viscosity (also regularization) models
for LES has been presented. It is based on the 5D phase space of invariants given in (6).
In this way, new models can be constructed by imposing appropriate restrictions in this
space. Example thereof are the three new eddy-viscosity models proposed in Eqs. (38),
(39) and (40). Like the Vreman’s model given in Eq.(31), they are also based on the
invariants of the tensor GGT . However, the have the proper cubic near-wall behavior.
Moreover, since the discretization errors may play an important role, a novel approach to
discretize the viscous term with spatially varying eddy-viscosity has also been presented.
It is based on basic operators; therefore, the implementation is straightforward even for
staggered formulations. The performance of the proposed methods will be assessed by
means of direct comparison to DNS results.

ACKNOWLEDGMENTS

This work has been financially supported by the Ministerio de Ciencia e Innovación,
Spain (ENE2010-17801), and a Ramón y Cajal postdoctoral contract (RYC-2012-11996).
Calculations have been performed on the IBMMareNostrum supercomputer at the Barcelona
Supercomputing Center. The authors thankfully acknowledge these institutions.

REFERENCES

[1] F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee. Using singular values to build
a subgrid-scale model for large eddy simulations. Physics of Fluids, 23(8):085106,
2011.

11



F.Xavier Trias, Andrey Gorobets, C.David Pérez-Segarra and Assensi Oliva
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