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E. Oñate, J. Oliver and A. Huerta (Eds)

EFFICIENT MODELING OF CONTINUUM BLADES USING
ANCF CURVED SHELL ELEMENT

Ayman A. Nada

College of Engineering, Jazan University, Jazan-442502, KSA.
anada@jazanu.edu.sa

Key words: Wind Turbine Blade, Continuum Mechanics, Plate and Shell elements.

Abstract. Large-size wind turbine blade is divided into two regions classified by struc-
tural and aerodynamic characteristics. The structural region (blade-root section), carries
the highest load with low aerodynamics efficiency. The aerodynamical region (blade-
span), is aerodynamically significant and therefore thinnest finite element can be utilized.
Recently, the Absolute Nodal Coordinate Formulation (ANCF) is used for constructing
continuum models of blade-span with uniform structure. Furthermore, a non-uniform and
twisted structure model is constructed successfully. These models utilized the ANCF thin
plate element due to its aerodynamical nature. However, it is concluded that the use of
thin plate element, specifically in the structural region, is not the optimum choice due to
the ignorance of the strain along the element thickness. Furthermore, it is found in that
the use of thick plate element within the ANCF leads to high numerical stiffness because
of the oscillation of gradient along the element thickness. In this investigation, a modified
displacement field is used such that a material point is defined by the midsurface and
the rotation of the element fiber along the material line. This line is orthogonal to the
midsurface in the undeformed configuration. The strain vector is formalized, taking into
consideration, the membrane as well as curvature strain. Numerical methods are carried
out to estimate the elastic forces and the generalized force Jacobian. The static solution
of 40[m] long is carried out using NR method successfully. It is concluded that the use of
shell element can be enhance the dynamic model for design process of such blades.

1 INTRODUCTION

The ANCF is designed for large deformation problems in multibody systems applica-
tions. In the ANCF, the global position vector gradients are introduced as nodal coordi-
nates in order to model rotation and deformation field of an infinitesimal volume within
the element [1]. Only the vectorial quantities that include the global position vector and
the position vector gradients are interpolated [2]. As a result, a non-incremental proce-
dures which are implemented in the general multibody dynamics computer algorithms,
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can be employed for solving the equations of motion. Furthermore, due to the use of
slope coordinates introduced for parameterizing the element rotation and deformation
fields, this formulation leads to a constant mass matrix. This, in turn, simplifies the
description for the equations of motion since the quadratic velocity vector becomes iden-
tically equal to zero [1, 3]. In contrast, the use of a global coordinate system for the
definitions of the nodal coordinates leads to a nonlinear expression for the elastic forces.

A sub-family of beam, plate and cable finite elements with large deformations are
proposed and employed the 3D theory of continuum mechanics [1]. The development
of plate elements based on the ANCF can be categorized into two groups. In the first
group, the transverse shear deformation is assumed to be insignificant, allowing the plate
elements to be described with position coordinates and slope vectors in a surface direction
[4]. This leads to a kinematic description in which the element is defined by the mid-
surface. In the second group of plate elements, transverse shear deformation is captured
by introducing additional slopes in the element transverse direction [5].

In the case of modeling large-size wind turbine blade, the blade is divided into two
regions classified by structural and aerodynamic characteristics. The structural region
(blade-root section), carries the highest load with low aerodynamics efficiency. The aero-
dynamical region (blade-span), is aerodynamically significant and therefore thinnest finite
element can be utilized. The ANCF is used for constructing continuum models of blade-
span with uniform structure [6]. Furthermore, a non-uniform and twisted structure model
is carried out in [7]. Both models utilized the ANCF thin plate element due to its aero-
dynamical nature. The complete blade model with its two regions as well as methods of
modeling slope discontinuities are carried out in [8] successfully. However, it is concluded
that the use of thin plate element, specifically in the structural region, is not the optimum
choice due to the ignorance of the strain along the element thickness. Furthermore, it is
found in that the use of thick plate element within the ANCF leads to high numerical
stiffness because of the oscillation of gradient along the element thickness. In this inves-
tigation, the modified displacement field [9], is used such that a material point is defined
by the midsurface and the rotation of the element fiber along the material line, that is
orthogonal to the midsurface in the undeformed configuration. Such material line remains
straight and unstretched during the deformations. It is considered that the material line in
the direction of normal vector at the curvilinear coordinate system. Therefore, the strain
of initially curved shell element can be represented as the difference between the current
and initial values. In this investigation, by using this displacement filed, the strain vector
is formalized, taking into consideration, the membrane as well as curvature strain. The
numerical methods are carried out to estimate the elastic forces and the generalized force
Jacobian. The static solution of 40[m] long is carried out using NR method successfully
and the results and concluded remarks are discussed in the last section.
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2 ABSOLUTE NODAL COORDINATE FORMULATION

In the absolute nodal coordinate formulation, the nodal coordinates of the elements
are defined in a fixed inertial coordinate system, this fixed inertial coordinate system
should be mentioned here as the Structure Coordinate System SCS:(XY Z) . The nodal
coordinates of an element j are consisting of the global displacements and slopes of each
node. For a 4-noded thin-plate element, element j, on body i, as shown in Fig.1, the
nodal coordinates of node k, k = (1, 2, 3, 4) can be written as:

eijk =
[
rijk

T ∂rijk

∂xij

T ∂rijk

∂yij

T
]T

(1)

where rijk defines the global position of node k and the three vectors ∂rijk/∂xij, and
∂rijk/∂yij, define the position vector gradients at node k with respect to the element
coordinate system ECS. As a consequence, such a representation guarantees inter-element
continuity of global displacement gradients at these points. The nodal coordinates of one

element can then be given by the vector eij =
[
eij1T eij2T eij3T eij4T

]T
. In the ANCF,

the global position of an arbitrary point on the mid-surface of body i, element j, is defined
as:

rijm = Sij
(
uij
)
eij (2)

where Sij is the element shape function matrix, uij =
[
xij yij

]T
is the local position of

the point, xij, and yij are the local coordinates of the element defined in the ECS. By
defining pi as the unconstrained vector of nodal coordinates over the flexible body i, with
the dimension of DOFs × 1, where DOFs are the total number of degrees of freedom.
Thus, Eqn.(2) can be rewritten as:

rijm = Sijeij = SijBij
1 Bi

2p
i (3)

where Bij
1 is the connectivity matrix and Bi

2 is boundary conditions linear-transformation
matrix.

The kinematic representation of shell models are usually pertain to the admissible
displacement profile through the shell thickness. In this investigation, the assumptions
connect the displacements of points located on a material line that is orthogonal to the
midsurface in the undeformed configuration. More specifically, it is usually assumed
(and experimentally substantiated) that any such material line remains straight and un-
stretched during the deformations, see Fig. (1) which is expressed by the following equa-
tion:

r = Se + z n = rm + z n (4)

in which, the superscript notation ij is removed for simplicity. In this equation, it is
considered that the material line in the direction of n at the curvilinear coordinate system
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Figure 1: Kinematic representation of curved plate element

(g1,g2). The normal vector n of the mid-surface of the plate is defined using cross product
of the vectors rx and ry, with subscript x and y refer to partial derivatives with respect
to these coordinates. The displacement rm represents a global displacement of the an
arbitrary point along the mid-surface. The displacement z n is due to the rotation of the
line. It should be noted that the rotation of an infinitely-thin straight material line is
uniquely defined by a rotation vector normal to that mid-surface. The gradient vectors
of the deformed shape can be represented as:

g1 =
∂r

∂x
=
∂rm
∂x

+ z
∂n

∂x

g2 =
∂r

∂y
=
∂rm
∂x

+ z
∂n

∂x
(5)

g3 =
∂r

∂z
= n =

g1 × g2

‖g1 × g2‖

The position vector of the an arbitrary point lies on the shell element in the initially
curved configuration, can be represented by the position vector of the point along the
mid-surface and normal vector as follows:

r0 = rm0 + z n0 (u)
rm0 = Se0

}
(6)

where the subsrcipts m and 0 are referring to the mid-surface and initial configuration,
respectively. The local curved surface coordinate frame for the undeformed configuration
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Figure 2: Strain measure of mid-surface plane of initially curved confiduration

can be represented by the tripad (g01,g02,n0). Since the gradient vectors rm0x and rm0y

are not orthogonal, see Fig.(2), and therefore, the curved-surface frame (gm01,gm02,nm0)
does not represent a Cartesian frame, which is generally can not be correlated by the
constitutive equations. The Cartesian coordinate frame (am01, am02, am03) can be defined
as:

am01 = gm01

am02 = am03 × am01

am03 = nm0

 (7)

The relationship between these two local coordinates can be found as:[
dξ
dη

]
=

[
a (gm01 · am01) a (gm01 · am02)
b (gm02 · am01) b (gm02 · am02)

]−T [
dx
dy

]
= J

[
dx
dy

]
(8)

where a and b are the length and width of the plate elements, respectively. Since gm01 ·
am02 = 0, the transformation matrix can be written as:

J =

[
J11 J12
0 J22

]
=

[
1/a J12
0 J22

]
(9)

2.1 Membrane strain of initially curved shell element

Let us assume the point P (ξ, η) is initially located at P̀ (ξ + dξ, η + dη) on the mid-
surface of the shell element. The infinitesimal arc length drm0 on the mid-surface can be
calculated using the local curved surface coordinate frame as:

drm0 = gm01dξ + gm02dη (10)
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where gm01 = ∂rm0/∂x, gm02 = ∂rm0/∂y are the position vector gradients at the mid-
surface. The square of arc length, |drm0|, of an infinitesimal segment along the mid-surface
of the initially curved element can be approximated by:

|drm0|2 = drm0 · drm0

= (gm01dξ + gm02dη) · (gm01dξ + gm02dη)

=
[
dξ dη

] [gTm01gm01 gTm01gm02

gTm01gm02 gTm02gm02

] [
dξ
dη

]
(11)

Therefore, the Green-Lagrange strain of the mid-surface of the shell element can be
written as:

εm0 =
1

2
JT
[
gTm01gm01 gTm01gm02

gTm01gm02 gTm02gm02

]
J (12)

Similarly, in the current (deformed) configuration, the square of arc length, |drm|, of
an infinitesimal segment along the mid-surface takes the form as:

|drm|2 =
[
dξ dη

] [gTm1gm1 gTm1gm2

gTm1gm2 gTm2gm2

] [
dξ
dη

]
(13)

The enlongation can be estimated as (drm0)
2− (drm)2, and therefore, membrane strain

of the mid-surface at current configuration, εmc , can be expressed as::

εmc =
1

2
JT
([

gTm1gm1 gTm1gm2

gTm1gm2 gTm2gm2

]
−
[
gTm01gm01 gTm01gm02

gTm01gm02 gTm02gm02

])
J

=

[
J2
11ε

m
11 J11 (εm11J12 + εm12J22)

J11 (εm11J12 + εm12J22) J12 (εm11J12 + εm12J22) + J22 (εm12J12 + εm22J22)

]
(14)

Therefore, the strain vector εmc =
[
εmc11 εmc22 2εmc12

]T
can be formulized as:

εmc11 = J2
11ε

m
11

εmc22 = J12 (εm11J12 + εm12J22) + J22 (εm12J12 + εm22J22) (15)

εmc12 = J11 (εm11J12 + εm12J22)

where

εm11 = gTm1gm1 − gTm01gm01

εm22 = gTm2gm2 − gTm02gm02 (16)

εm12 = gTm1gm2 − gTm01gm02

where εxx and εyy are the normal strain components in x and y direction and εxy is the
shear strain.
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2.2 Curvature strain of initially curved shell element

Recalling the position vector of an arbitrary point along the deformed shape, Eq.(4);
where rm is the vector that defines the mid-surface of the plate, and z n is the vector
that defines a fiber of the plate. The curvature strain εκ, of initially curved element can
be given by the following equation:

εκc = zJT (κ− κ0) J (17)

This equation, Eq. (17) can be written explicitly as:

εκc = zJT
[
κ11 − κ011 κ12 − κ012
κ12 − κ012 κ22 − κ022

]
J

= z

[
J2
11κc11 J11 (J12κc11 + J22κc12)

J11 (J12κc11 + J22κc12) J12 (J12κc11 + J22κc12) + J22 (J12κc12 + J22κc22)

]
(18)

Therefore, the strain vector εκc =
[
εκc11 εκc22 2εκc12

]T
can be formulized as:

εκc11 = J2
11κc11

εκc22 = J12 (κc11J12 + κc12J22) + J22 (κc12J12 + κc22J22) (19)

εκc12 = J11 (J12κc11 + J22κc12)

such that, the curvature components can be evaluated as:

κc11 = κ11 − κ011 = nTg11 − nT0 g011

κc22 = κ22 − κ022 = nTg22 − nT0 g022 (20)

κc12 = κ12 − κ012 = nTg12 − nT0 g012

where

g11 =
∂2r

∂x2
=
∂2rm
∂x2

+ z
∂2n

∂x2

g22 =
∂2r

∂y2
=
∂2rm
∂y2

+ z
∂2n

∂y2
(21)

g12 =
∂2r

∂x∂y
=
∂2rm
∂x∂y

+ z
∂2n

∂x∂y
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2.3 Elastic Forces

Elastic forces within the plate elements based on the ANCF can be obtained by in-
dividually treating the in-plane membrane and curvature strain components. The strain
energy can be written as the sum of two terms: one term is due to membrane and shear
deformations at the plate mid-surface, whereas the other term is due to the plate bending
and twist. The strain energy can then be written as follows [1, ?]:

Ue = Um
e + Uκ

e =
1

2

∫
V0

εm
T

cEεm|J|dV +
1

2

∫
V0

εκ
T

cEεκ|J|dV (22)

The energy expression given by Eq.(22) is computationally expensive since numerical
integration over the element volume is involved. Once the strain energy is calculated, the
elastic forces and their Jacobian matrix, called tangential stiffness matrix,can be derived
as follows:

Qe = Qm
e + Qκ

e =
∂Um

e

∂e
+
∂Uκ

e

∂e
(23)

K =
∂Qe

∂e
(24)

In this study, tangential stiffness matrix, K, is evaluated numerical by allowing a small
perturbations in the nodal coordinates e and re-calculating the elastic force Qe , to find
the matrix K. The convergence criterion for the iteration is defined such that Euclidean
norm of the elastic force vector obey some extent.

3 BLADE MODEL

In the case of modeling span-wise slope discontinuity, lofted surface is constructed
along the blade length, particularly between the ’start’ and the ’tip’ cross and between
the ’start’ and ’root’ sectional curves [8]. In the case of obtaining the global position
vector for the non-uniform wind turbine blade; the position vector r should be linearly
interpolated between the blade starting-chord, c1, and tip-chord c2. This bounded curves
can be denoted by r (ξ, 0) and r (ξ, 1) and by two straight segments r (0, η) and r (1, η)
connecting them. Surface lines in η direction are therefore straight,i.e., lofted surfaces [?],
whereas each line in the ξ direction is a blend of r (ξ, 0) and r (ξ, 1) this blend constitutes
the surface expression of:

r (ξ, η) = (1− η) r (ξ, 0) + η r (ξ, 1) (25)

where η and ξ are parametric domains such that ξ, η ∈ [0, 1] and can be estimated as
ξ = x/a, η = y/b, with a, and b are the element length and width respectively. It should
be mentioned here that this kind of surface is fully defined by specifying the two boundary
curves. Similar procedure can be carried out to construct the blade-root section. The start
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cross section of the blade is used with the circular edge of the root surface to construct
the lofting surface between them. The boundary curves can be written as:

r (ξ, 0) = ri = S (x, 0) e · · · ,x ∈ [0, c1] (26)

where e is the nodal coordinates along the curve of the starting-chord, curve i. Thus, the
position vector of an arbitrary point along the tip curve, curve j, can be concluded as:

r (ξ, 1) = rj =

 0
Ls
0

+

 c2c1 0 0

0 1 0
0 0 c2

c1

 r (ξ, 0) · · · ,x ∈ [0, c2] (27)

whereas the position vector of an arbitrary point along the circular root curve, curve k,
can be obtained as:

r (ξ, 1) = rk =

 0
−Lr

0

+

cos θ 0 0
0 0 0
0 0 sin θ

 cr· · · ,θ ∈ [0, 2π] (28)

such that c1, c2, cr are the chord lengths at the starting, tip and root sections along the
blade. simply cr is the radius of the circular curve of the blade-root. Ls and Lr are the
blade-span and blade-root lengths, such that the total length of the blade is Ls + Lr. By
substituting Eq.(26 , 27) into Eq.(25) gives the lofted surfaces between ri and rj, which
can be solved for the nodal positions at the tip curve. Also, By substituting Eq.(26 , 28)
into Eq.(25) gives the lofted surfaces between ri and rk, which can be solved for the nodal
positions at the circular root curve, see Fig.(3). The span-wise slope discontinuity can
be modeled by using the lofting equation for the gradients transformation as well as the
nodal position transformation. The gradients of the lofted surface can be obtained as:

dr (ξ, η)

dξ
= (1− η)

dS (ξ, 0)

dξ
e + η

dS (ξ, 1)

dξ
e (29)

dr (ξ, η)

dη
= −r (ξ, 0) + r (ξ, 1) (30)

It is therefore, available to obtain the nodal positions and gradients necessary to construct
the ANCF model of a complete blade structure for the blade-span section as well as for
the blade-root section. It is necessary to emphasis that using Eq.(29, 30), a continuous
ANCF model can be obtained for the structure of large-size wind turbine blade.

The performance of the curved shell element based on the rotation of the fiber line is
studied through static test, in which, the blade is fixed at its root side while the structure
is subjected to a force of 2, 5 and 10 KN acting at its tip, see Fig. (5). The blade
specifications are as follows: NACA 4412 profile, blade-span length Ls = 30 [m], blade-
root length Lr = 10 [m], root radius cr = 1 [m], taper angle of 5◦, twist angle of 5◦, chord
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Figure 3: ANCF model of blade-root section using curved shell elements

Figure 4: 40 [m] wind turbine blade with multi-sectional along the blade span (8-sections)
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Figure 5: Static Deflection of large-size blade Figure 6: Numerical convergence and accuracy

length at the blade start-section c1 = 5 [m]. The static solution is convergent mostly at
the third iteration, see Fig.(6), however, it is clearly seen that the blade model of lower
elements performs poorly and it is not able to capture the accurate solution, in Fig.(6),
each section include 6 elements.

4 CONCLUSION

In modeling large-size wind turbine blades; the use of thick plate description may lead
to curve-induced distortion and, consequently, membrane locking associated with strain
components along x-axis and y-axis. It is also known that the strain component along
z-axis leads to curvature thickness locking. However, it is concluded that the use of thin
plate element, specifically in the structural region, is not the optimum choice due to
the ignorance of the strain along the element thickness. This paper introduce the blade
model with a modified displacement filed in order to take the curved nature as well as
the considerable thickness into consideration. In this displacement field, a material point
is defined by the midsurface and the rotation of the element fiber along the material line.
This line is orthogonal to the midsurface in the undeformed configuration. Numerical
methods are carried out to estimate the elastic forces and static solution of 40[m] long
blade subjected to static loads is carried out using Newton-Raphson method successfully.
It is concluded that the number of blade-sections, i.e., number of elements along the blade
span, is playing an important role in the solution accuracy.
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