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Abstract. This work considers development of dedicated Evolutionary Algorithms (EA) with 

several new specialized acceleration techniques introduced. Our long-term research is 

oriented towards development of efficient solution methods for a wide class of large, non-

linear, constrained optimization problems. We are presenting here a preliminary application 

of the improved EA to sample benchmark problems of residual stresses analysis. The final 

objective of our research is such analysis done for railroad rails, and vehicle wheels. 

Knowledge of the tensile residual stresses is crucial for reliable prediction of rails and wheels 

service life resulting from their fatigue failure. Both the theoretical and experimental 

investigations of residual stresses may be expressed in terms of large, non-linear, constrained 

optimization problems. Due to the size and complexity of the optimization problems involved, 

our research is focused, first of all, on the EA efficiency increase.  
 

 

1 INTRODUCTION 

This work considers development of dedicated Evolutionary Algorithms (EA) with several 

new specialized acceleration techniques introduced. Many scientific and engineering tasks 

may be formulated as large optimization problems, and require efficient solution methods. 

Therefore, our long-term research [4] is oriented towards development of such methods for 

a wide class of large, non-linear, constrained optimization problems, where a discrete function 

is sought, e.g. expressed in terms of its nodal values. These values are defined on a mesh 

formed by arbitrarily distributed nodes. We are presenting here a preliminary application of 

the improved EA to sample benchmark problems of residual stresses analysis. The final 

objective of our research is such analysis done for railroad rails, and vehicle wheels [8,14,15]. 

Knowledge of the tensile residual stresses is crucial for reliable prediction of rails and wheels 

service life resulting from their fatigue failure [14]. Both the theoretical and experimental 

investigations of residual stresses may be expressed in terms of large, non-linear, constrained 

optimization problems [14,15]. Especially when for data smoothing the Physically Based 

Approximation (PBA) is used [9,14]. In contrast to most of the deterministic methods, the EA 
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may be successfully applied with equal efficiency to both the convex and non-convex 

problems, however, their general efficiency is rather low. Due to the size and complexity of 

the optimization problems involved, our research is focused, first of all, on the efficiency 

increase of the EA. 

2 PROBLEM FORMULATION 

We consider a wide class of large, non-linear, constrained optimization problems. Usually 

these problems are formulated as optimization of functionals, where a function u(x), xR
N
  is 

sought, usually in the discrete form of the vector  u = {ui}  consisting of nodal values  ui , 

i = 1, 2, …, n.  These nodal values are defined on a mesh formed by arbitrarily distributed 

nodes. Here N  is the dimension of the physical space (1D, 2D or 3D), and n  is a number of 

decision variables. In general, considered optimization problems may be posed as follows: 

Find a function u = u(x) , that yields the stationary point of the functional )(u , satisfying 

the equality 0)( uA , and inequality constraints 0)( uB . 

The PBA approach is a specific example of the above general formulation. In the PBA all 

information about the considered problem may be used.  The whole available experimental, 

theoretical, and heuristic knowledge is introduced in the functional and related constraints. 

The problem is posed in the following general way: 

Find the stationary point of the functional 

]1;0[,)1(   TE  (1) 

satisfying the equality constraints 0)( uA  (usually of theoretical nature), and inequality 

constraints eu )(B  (usually of experimental nature). Here, )(uE  and )(uT  are 

the experimental and theoretical parts of the functional, scaled to be dimensionless quantities, 

u is the required solution,   is a dimensionless scalar weighting factor, and e  is 

an admissible tolerance. 

Particular, detailed formulation of the PBA approach for residual stresses reconstruction in 

railroad rails, and vehicle wheels may be found in [9]. Theoretical model of residual stresses 

analysis in bodies under cyclic loadings is based on shakedown theory and may be also 

formulated as such general optimization problem [14,19]. 

Such optimization problems may involve large number of decision variables and require 

efficient solution methods. 

3 APPLIED ALGORITHMS 

3.1 Evolutionary Algorithms 

The EA are precisely understood here as Genetic Algorithms with decimal (floating-point) 

chromosomes. The standard algorithm consists of three operators: selection, crossover and 

mutation [3,11]. Significant acceleration of the EA-based solution approach may be achieved 

in various ways, including appropriate hardware, software, and algorithm improvements. 

Hardware acceleration techniques include distribution and parallelization of calculations on 

various multiprocessor systems, e.g., GPUs, FPGA devices, SMP machines or standard 

computer clusters. Efficient software implementations dedicated for particular hardware 
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architectures are crucial as well. However, our research is mainly concentrated now on 

development of new algorithms and improvements of certain existing ones. Distributed and 

parallel computation are used as well, but mostly as a support for new acceleration 

techniques. 

Algorithmic acceleration of an optimization process may be obtained by, e.g., development 

of hybrid algorithms [2,5] combining the EA with deterministic methods (such as feasible 

direction method), introduction of new, problem-oriented operators [6,7], choice of the most 

efficient combination of particular variants of operators, and evaluation of the best values of 

their parameters. Moreover, we have recently proposed, and preliminarily tested, several 

acceleration techniques based on simple concepts [4,16,17]. 

In order to achieve an acceleration of the optimization process, the modified EA use 

smoothing and balancing techniques, solution averaging, a’posteriori error analysis and 

related techniques, as well as adaptively refined series of meshes, and possible combinations 

of the above. Proposed techniques are well supported by non-standard use of parallel and 

distributed calculations. Some of them are problem- (or class of problems) oriented, other are 

of more general character. Some of these techniques are addressed to optimization of 

functionals, where a large set of nodal values of a function is searched.  

3.2 Smoothing and Balancing 

When additional information about solution smoothness is available, the Moving Weighted 

Least Squares (MWLS) approximation technique [18,20] is applied in order to smooth raw 

solutions obtained from the standard EA. Additional smoothing may be applied periodically 

during the whole optimization process.  

In problems of mechanics each smoothing may result in the global equilibrium loss of 

a considered body. The equilibrium is restored by the standard EA in a series of iterations. 

However, it may be also restored at once by means of an artificial balancing of body forces, 

performed directly after the smoothing [4]. In the considered tests, balancing procedure was 

used based on the linear correction function. Formulation of this procedure will be given in 

the description of the benchmark problems. 

3.3 A’posteriori Error Analysis and Related Techniques 

In the case of deterministic methods, the a’posteriori error analysis is well developed, and 

widely used now [1]. Some concepts of such error analysis may also be partially extended 

into the case of the EA solution approach. However, a new definition of a reference solution 

is needed. Therefore, we have proposed a concept based on the stochastic nature of 

evolutionary computation [16]. 

Due to such nature, the best chromosomes taken from various independent populations 

may differ from each other. Reference solutions required to estimate local errors are proposed 

to be obtained by a weighted averaging of the best solutions taken from the independent EA 

processes. The weighted averaged solution is expected to have a better chance to be closer to 

the exact one than majority of its particular components contributing to such average. 

After a’posteriori error estimation, and evaluation of relevant error maps, information about 

the magnitude and distribution of the local errors is used by appropriately improved 

crossover, and mutation operators in order to intensify calculations in large error zones [16]. 
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Information about the global errors may also be introduced as an additional criterion in 

selection process [16]. 

Moreover, an additional acceleration may be achieved by collecting the best chromosomes, 

taken from all populations, and generating a new population of “representatives”. 

Convergence in such population should be better than in the other populations. 

In order to accelerate the optimization process a cloning strategy may be also used. 

Cloning may be applied to the weighted mean chromosome and/or to the best representatives 

[16]. For instance, 10% of the worst chromosomes in all populations may be replaced by the 

clones. 

A’posteriori error analysis and related techniques may be well supported by the parallel 

and distributed calculations [16] in addition to other standard advantages provided by 

multiprocessor systems [10,13]. In such case all independent populations are calculated 

simultaneously in a parallel way. Of course, calculations carried out in each population may 

also be partitioned among processing units. Such approach essentially improves efficiency of 

the solution process. 

More detailed information and wider numerical analysis of mentioned techniques using 

chosen benchmark problems may be found in [16]. 

3.4 Adaptive Step by Step Mesh Refinement 

Solution time needed for optimization of functional is, in many problems, strictly dependent 

on the number of decision variables used, e.g. on the mesh density in the domain. Therefore, 

when using an adaptive step-by-step mesh refinement, the analysis starts from a coarse mesh, 

allowing to obtain a solution much faster than in the fully dense grid case. When decreasing 

the number of nodes, the convergence rate is increased, and the time spent on each iteration is 

reduced. However, the solution obtained on a coarse mesh may usually be not precise enough. 

In order to increase its precision, the mesh is refined by inserting new nodes, based on the 

results of the error analysis done so far. The initial function values at these nodes are found by 

using an approximation built upon the coarse mesh nodal values. A general approach for most 

optimization problems may be obtained by using the Moving Weighted Least Squares 

(MWLS) approximation [18,20]. However, other approximation or interpolation methods may 

be considered. In some problems, the best results may be obtained for simple linear 

interpolation of the nodal function values. Efficiency of this approach may depend on the 

solution nature and approximation method applied. 

Furthermore, the step-by-step mesh refinement may be also used in the a’posteriori error 

analysis. Solutions obtained after each mesh refinement (preliminary approximation followed 

by smoothing) are used as initial reference solutions for the error estimation. Such combined 

strategy, using all techniques mentioned above, may involve the following steps [4]: 

- Evaluation of the solution on a coarse mesh. 

- Smoothing of this rough solution. 

- Mesh refinement and approximation of the initial values in the inserted nodes. 

- Use of the obtained solution as an initial reference for the error estimation. 

- Use of the weighted solution averaging for further reference solution generation, 

and the a’posteriori error analysis. 

- Repetition of the above procedure until sufficiently dense mesh is reached. 
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4 BENCHMARK PROBLEMS 

A variety of simple benchmark problems was chosen in order to evaluate correctness, 

and efficiency of the proposed acceleration techniques, as well as their ability to deal with 

large, and very large optimization problems. In particular, we have analyzed the residual 

stresses in an elastic-perfectly plastic bar subject to cyclic bending, and in a thick-walled 

cylinder made of the same material, and subject to cyclic loadings, like internal pressure, 

torsion and tension [4]. These problems may be analyzed as either 1D (taking into account 

existing symmetries) or as 2D ones as well. Another advantage of considered benchmark 

problems is possibility of testing almost any number of decision variables involved. The exact 

solutions needed for such comparisons are, of course, known. 

We have also investigated several benchmark problems using the PBA approach for both 

experimental and numerical data, including smoothing of beam deflections, and 

reconstruction of residual stresses arising in bodies under cyclic loadings. However, these 

benchmark problems and obtained results are not discussed in this paper. 

4.1 Benchmark problem 1 

Considered is residual stresses analysis in an elastic-perfectly plastic bar of the rectangular 

cross-section subject to cyclic bending. 

 

Figure 1: Model of bar subject to pure cyclic bending by the moment M 

Formulation of the problem – 1D model 

Find stresses )(z   satisfying the minimum of the total complementary energy 


H

dz

0

2min 


 (2) 

and constraints: 

- global self-equilibrium equation 

 

H

dzzM

0

0  (3) 

- yield condition for total stresses 

Y
e    (4) 

where Y  is the yield stress (plastic limit), and e  is  the purely elastic solution of 

x

y

z

MM
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the problem. After discretization, where the sought normal stress )(z   is replaced by the 

piecewise linear function spanned over the nodal values i , the following formulation is 

obtained: 

Find stresses n ...,,, 21  satisfying 
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and equality constraints 

nkY
e
kkY ...,,2,1,        (6) 

Numerical integration is used providing the exact results for linear functions. 

Balancing procedure in 1D 

The balancing procedure proposed for this benchmark problem is based on an assumption 

that the lost global equilibrium may be restored by adding an appropriate linear correction 

term bzaz )( . In the bar cross-section the resultant, unbalanced axial force N and the 

relevant static moment MY are evaluated using the EA solution based stress data: 

 dzN   (7) 

 dzzMY        (8) 

Using the same formulas for the linear correction term, one may find unknown coefficients 

a and b. Finally, obtained are: 

Y

Y

I

M
a  ,    and     

H

N
b

2
  (9) 

where IY is the moment of inertia of the bar cross-section. 

Formulation of the problem – 2D model 

In 2D model, the fitness function (total complementary energy) is defined as follows: 
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where    are Simpson integration coefficients. The sought solution has to satisfy the 

following constraints: 

- global self-equilibrium equation 
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- yield condition for total stresses 

nkY
e
kkY ...,,2,1,    (12) 

Balancing procedure in 2D 

The balancing procedure may be developed in a way similar to the 1D case. In 2D case, the 

coefficients of the linear correction function czbyazy ),(  are obtained as follows: 

Z

Z

I

M
a  ,     

Y

Y

I

M
b  ,     and     




N
c   (13) 

where IZ , IY are moments of inertia, and   is bar cross-section. 

4.2 Benchmark problem 2 

Considered is an elastic-perfectly plastic thick-walled cylinder under cyclic internal 

pressure. The following optimization problem given in the polar coordinates for residual 

stresses was analyzed: 

Find the minimum of the total complementary energy: 
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subject to the equilibrium equation 
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boundary conditions 
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the incompressibility equation 
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and the yield condition 

Y
er

z
r
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 ),,,(  (18) 

where r

z

r

t

r

r  ,,  are respectively the radial, circumferential and longitudinal residual 

stresses, },,{ e

z

e

t

e

r

e     is the purely elastic solution of the problem, Y  is the yield stress,  

a, b  are respectively the internal and external cylinder radii,  L  is its length, and  E  is the 

Young modulus. 

5 NUMERICAL RESULTS 

The objective of the tests presented here is also a comparison of various variants of the 

improved EA with the standard one. The standard algorithm is understood here as one 
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consisting only of three basic operators: selection, crossover, and mutation. Before testing 

additional acceleration techniques, we chose first the most efficient combination of the 

standard but decimal EA operators. Searching the best combination of operators, as well as 

adjusting their parameters, the acceleration factor up to several times may be reached. From 

numerous variants of operators [6,7] we preliminarily chose several popular ones: the ranking, 

and tournament selection, arithmetic, and heuristic crossover, uniform, non-uniform, and 

border mutation. We also tested various combinations of them. Using the best combination 

found, namely the rank selection, heuristic crossover, and the non-uniform mutation, 

particular acceleration techniques already mentioned before were analyzed. Some other 

results of our efficiency analysis were also described in [16], and very briefly in [4,17]. 

Acceleration of computation was measured using four speed-up factors defined in [16]. 

These factors take into account convergence of mean solution error as a function of time, or as 

a function of number of iterations, as well as convergence of fitness function. These four 

speed-up factors together provide the investigated acceleration characteristics. Moreover, 

the solution precision increase after certain periods of time or after a number of iterations was 

measured. 

5.1 A’posteriori error estimation 

A wide discussion of the weighted solution averaging, a’posteriori error analysis, and 

related techniques for improving efficiency of optimization processes was given in [16]. 

Using all these techniques together the speed-up about 2-4 was reached. However, when 

appropriately combined with additional smoothing and balancing procedure, the speed-up 

factor was raised up to about 7.5 times [16]. The numerical analysis was done using mostly 

simple benchmark problems, such as bar bending, and pressurized cylinder. 

We are presenting here only sample results of a’posteriori error estimation. They were 

obtained for Benchmark 1 (2D model) after 3000 iterations of typical optimization process. 

The reference solution was calculated by weighted averaging of the best solutions 

(chromosomes) taken from 12 independent populations. Such reference solution was used 

later on for local errors estimation and an error map generation. You may see such estimated 

error map (Figure 2 (a)), and compare it to the exact one (Figure 2 (b)). In Figure 3 (c) you 

may see the difference between both maps. In this case, the error values in mean-square norm 

were as follows: 0.326 for estimated error map, and 0.338 for the exact one. The mean-square 

norm of the difference between both maps was equal 0.095. 

For evaluation of the quality of error estimation in the case of benchmark problems we 

may use the effectivity index [16]: 

e

ee
i


 1  (19) 

where e is the exact local error, and  ̅ is estimated local error. For perfect estimation the 

effectivity index would be equal to 1. For considered example the effectivity index i = 1.04 

was reached. 
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(a)        (b) 

 

(c) 

Figure 2: Example of a’posteriori error estimation:  (a) Estimated error map (b) The true error map  

 (c) Difference between the true and estimated error maps 

5.2 Step by step mesh refinement 

The typical results obtained by using algorithm described in Subsection 3.4 are shown in 

Figure 3. They were obtained from the residual stresses analysis in the bending bar 

benchmark problem (2D model). 

In this case, the improved EA used a series of denser and denser meshes, as well as the 

a’posteriori error analysis. In Figure 3 one may see the true errors of the best solutions found 

after each step using the same mesh. The process started with 9 nodes (Figure 3 (a)), and was 

continued until the number of 1089 nodes was reached (Figure 3 (e)). Each nodal value 

corresponds to one decision variable (gene in a chromosome). When using the standard EA, 

even for much smaller number of nodes, the solution could not be obtained in a reasonable 

number of iterations. The whole considered process was continued for 3500 iterations. 

Precision of the final solution increased about 150 times when compared to one obtained by 

the standard EA. Furthermore, also in comparison to the standard EA, the acceleration factor 

of the optimization process up to about 200 times was reached. 
 

2

4

6

8

10
2

4
6

8
10

 

2

4

6

8

10
2

4
6

8
10

 

2

4

6

8

10
2

4
6

8
10

 

0

0,2400

0,4800

0,7200

0,9600

1,200

z 

y 

z 

y 

z 

y 



Janusz E. Orkisz and Maciej A. Głowacki. 

 10 

           

(a)                                                (b)                                                (c) 

 

(d)                                                (e) 

Figure 3: The true solution errors obtained in the residual stresses analysis in the bending bar (2D model). 

The algorithm used subsequent meshes with (a) 9 (b) 25 (c) 81 (d) 289 and final (e) 1089 nodes 

Similar tests were executed for residual stress analysis in the cyclically pressurized 

cylinder (Benchmark 2). Brief information about those tests and results obtained may be 

found  in [4]. The largest optimization problem for 2D model of such analysis involved over 

2000 decision variables. 

6 FINAL REMARKS 

The general objective of this research is development of the EA method for efficient 

solution of large, non-linear, constrained optimization problems. Preliminary results of the 

executed tests clearly show a possibility of significant increasing solution efficiency using all 

proposed acceleration techniques. It is also worth noticing, that the improved EA allowed for 

obtaining solutions in cases when the standard EA failed, e.g. for large number of decision 

variables. 

Future research includes continuation of various efforts oriented towards an improvement 

of the EA-based optimization approach, analysis of further benchmark problems, and 

application of such developed method to residual stresses analysis in railroad rails and vehicle 

wheels [8,14]. The EA based PBA approach for a wide class of smoothing of experimental 

data problems is also expected. 
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