
11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)
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Abstract. We present a modular shock-fitting algorithm for unstructured grids that
can be used in conjunction with virtually any vertex-centred shock-capturing solver. The
unstructured, shock-fitting algorithm, originally developed for ideal gases, has here been
extended to thermochemical nonequilibrium flows and coupled with COOLFluiD, an in-
house shock-capturing CFD solver developed at the Von Karman Institute. Results ob-
tained in the computation of hypersonic flows past circular cylinders are presented for
both ideal gas and dissociating Nitrogen in thermochemical nonequilibrium.

1 INTRODUCTION

The accurate simulation of hypersonic flows past blunt bodies using unstructured grids
is still a challenge, despite more than 20 years of algorithmic developments on unstruc-
tured shock-capturing solvers. Indeed, the numerical modelling of strong bow shocks,
shock-shock and shock-boundary layer interaction, that invariably occur in a typical hy-
personic flow, can heavily affect the accuracy of the entire flowfield. Widespread “tra-
ditional” shock-capturing solver often exhibit severe drawbacks when used to simulate
hypersonic flows: stagnation point anomalies [1], carbuncle and spurious oscillations [2]
and a reduction of the order of accuracy within the entire shock-downstream region [3].
These drawbacks seem to be caused by the numerical details of the capturing process,
so that shifting to an entirely different numerical modeling of the discontinuities might
prove useful.

The shock-fitting approach, which has been made popular since the mid 60s by Moretti
and collaborators [4], has already proved to be immune to the shock-capturing drawbacks.
Shock-fitting consists in using the Rankine-Hugoniot jump relations to explicitely track
the motion of the discontinuities in a Lagrangian manner.
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Shock-fitting algorithms have been used in the past to simulate chemically reacting
nonequilibrium flows on structured grids, see e.g. the work by Pfitzner [5] and Paciorri
et. al. [6] in the 90s. More recently, Prakash et al. [7] have developed an high order finite
difference shock-fitting algorithm to simulate thermochemical nonequilibrium flows on
structured grids. In recent years, some of the authors [8, 9, 10, 11] have developed an un-
structured shock-fitting algorithm which is algorithmically simpler than the shock-fitting
algorithms traditionally used in the structured-grid setting. In the present contribution,
the unstructured shock-fitting algorithm has been has been extended to deal with thermo-
chemical nonequilibrium flows and coupled with COOLFluiD [16, 17], an in-house CFD
solver developed at the Von Karman Institute (VKI). Results have been obtained for both
ideal and thermochemical nonequilibrium inviscid flows.

2 GOVERNING EQUATIONS

2.1 Governing equations

The system of equations considered in this work is the set of Euler equations governing
multispecies and two-temperature flows:

∂U

∂t
+∇ · Fc = S, (1)

where U stands for the conservative variables vector, Fc for the convective flux tensor
and S for the source terms vector. For a 2 temperature, multispecies flow, the conservative
variables vector includes the species densities ρi, the momentum ρu, the total energy ρE

and the vibrational energy ρev:

U =
[

ρi, ρu, ρE, ρev
]t
. (2)

The components of the convective flux tensor Fc are given in Eq. (3):

Fc =
[

ρiu, ρuu+ pId×d, ρuH, ρuev
]t
, (3)

where p is the pressure, H the total enthalpy and Id×d is the identity matrix of order
d.
The source term vector S is given by:

S =
[

Sρi , 0t, 0, Sev

]

. (4)

Chemical source terms Sρi in Eq. (4) are given by the mass action law:
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Sρi = Mi

Nr
∑

r=1

(

ν
′′

ir − ν
′

ir

)

ξ̇r, (5)

where ξ̇r is the velocity for the rth chemical reaction:

ξ̇r = kfr

Ns
∏

i=1

(

ρi

Mi

)ν
′

ir

− kbr

Ns
∏

i=1

(

ρi

Mi

)ν
′′

ir

. (6)

In Eqs. (5 - 6) Ns is the number of chemical species, Nr the number of chemical
reactions, Mi the molar weight of the ith species, kfr and kbr resp. the forward and
backward reaction rates and ν

′

ir and ν
′′

ir resp. the stoichiometric coefficients of the products
and the reagents. The vibrational energy source term Ṡev accounts for the energy exchange
between the roto-translational and the vibrational modes:

Ṡev =

Ns
∑

i=1

ρi
(ev,s(T )− ev,s(Tv))

τs
, (7)

where ev,s is the specific vibrational energy and τs is the relaxation time of the sth

species; T is the rototraslational temperature and Tv the vibrational temperature. More
details concerning the thermochemical model implemented in COOLFluiD can be found
in [20, 19, 21]. The thermochemical properties are provided by the MUTATION [31] library
developed at the VKI.

When dealing with an inert gas, the governing PDEs are only given by the continuity
equation for the single gas, the linear momentum conservation equation and the conser-
vation equation of total energy. The conservation equation of the vibrational energy is
neglected and there are no source term contributions in the governing equations.

3 COMPUTATIONAL TOOLS

3.1 Shock-fitting technique

The unstructured shock-fitting algorithm that has been recently developed by some of
the authors [8, 9, 10, 11] consists of two key ingredients: i) a local re-meshing technique
that constructs a time-dependent mesh in which the fitted discontinuities are internal
boundaries of zero thickness and ii) an algorithm for solving the Rankine-Hugoniot jump
relations that provides the Lagrangian velocity of the discontinuity and an updated set
of dependent variables within the downstream side of the fitted shock. More precisely, in
two space dimensions the fitted shock fronts are made of polygonal curves, i.e. a connected
series of line segments (which we call the shock edges) that join the shock points. Two sets
of flow states, corresponding to the upstream and downstream sides of the discontinuity,
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are assigned to each of the shock-points located on either side of the shock front. The
downstream state and the shock speed are computed according to the Rankine-Hugoniot
jump relations and the fitted shock is allowed to move throughout a background triangular
mesh that covers the entire computational domain.

Local re-meshing around the shock is accomplished using public domain software:
triangle [13] in 2D and tetgen [14] and yams [15] in 3D. In the near future, we plan
to accomplish this same task using the local remeshing technique designed by Zaide and
Olliver-Gooch [18].

The fitted shocks are treated as interior boundaries by the same shock-capturing code
which is used to solve the discretised governing equations in the smooth regions of the
flow-field.

Recently, the shock-fitting algorithm, originally developed for an ideal gas, has been
extended to chemical non-equilibrium flows [23]. The generalization to a reactive mixture
has required a minimum effort, since modeling the bow shock as a partly dispersed shock
wave [22], the concentrations of chemical species are kept frozen while passing through
the bow shock.

When dealing with thermochemical non-equilibrium, as we do in the present work, the
specific vibrational energy is kept constant through the bow shock.

3.2 Shock-capturing solver

One of the key features of the unstructured shock-fitting algorithm is its modularity:
the shock-capturing code used to discretise the governing PDEs (1) in the smooth regions
of the flowfield is used as a “black box” by the shock-fitting algorithm. The only constraint
is that the unstructured shock-capturing solver must feature a vertex-centred storage
of the unknowns. In [8, 9, 10, 11] the unstructured shock-fitting algorithm had been
coupled with the in-house eulfs [12] shock-capturing code. In the present work, the
shock-capturing solver has been replaced, with a very limited coding effort, with the
VKI-developed COOLFluiD [16, 17] solver. This was done both for demonstrating the
modularity of the unstructured shock-fitting algorithm, but also because COOLFluiD

features a wider range of modelling capabilities than eulfs. Both codes use Residual
Distribution schemes (RD) 1 for the spatial discretization, so we briefly introduce the
main characteristics of the RD discretization for the governing PDEs (1); further details
can be found, e.g. in [24, 25].
The solution is expressed by means of a Finite Element FE linear representation:

Uh(x, t) =
∑

j

UjNj(x), (8)

where the FE linear shape function Nj(xk) = δjk has a tent-like shape and thus takes

1RD schemes are also known under the name of Fluctuation Splitting schemes (FS).
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value 1 at grid point j and 0 within its distance-1 neighbours.
For each element e with volume Ωe and boundary surface ∂Ωe, the steady-state residual
is defined by:

Φe =

∮

∂Ωe

F · ndS −

∫

Ωe

SdV = Φc,e
−ΦS,e. (9)

Since the dependent variables are associated with the grid-points of the computational
mesh, a nodal residual needs to be constructed within each mesh-point. The nodal residual
is then assembled by collecting fractions Φ

c,e
i , resp. ΦS,e

i , of the net inviscid fluxes Φc,e,
resp. the volumetric integral of the source term ΦS,e, associated with all the elements e

by which the node i is surrounded:

Φc
i =

∑

i∋e

Φ
c,e
i , ΦS

i =
∑

i∋e

Φ
S,e
i . (10)

The convective contribution to the nodal residual is generally expressed as:

Φc
i =

∑

i∋e

Be
iΦ

c,e (11)

where Be
i are the so called distribution matrices, which define the cell residual fraction

of the element e which is sent to its vertex i. The distribution matrices depend on the
nodal upwind parameters:

Kj =
1

d

d
∑

i=1

Aj,xi
nj,xi

(12)

where Aj,xi
is the Jacobian of the convective flux projected along the direction xi and

nj,xi
are the components of the vectors normal to the element faces. When dealing with

perfect gases, the Jacobian matrices are computed by means of a conservative linearization
based on Roe’s parameter vector [26, 27].
It is possible to construct schemes that depend linearly upon the solution (when solving a
linear PDE) and are either monotonicity preserving, but limited to first order of accuracy,
which is the case of the N scheme, or, if second order accurate, may lead to oscillatory
behaviour in the neighbourhood of a captured discontinuity, which is the case of the LDA
scheme:

Φ
e,N
i = K+

i · (Ui −Ue
inlet) , Φ

e,LDA
i = B

e,LDA
i Φe.
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The inlet state Ue
inlet and LDA distribution matrix B

e,LDA
i are given by:

Ue
inlet =

d+1
∑

j=1

(

K−

j

)

−1
·

d+1
∑

j=1

K−

j ·Uj , B
e,LDA
i = K+

i ·

(

d+1
∑

j=1

K+
j

)−1

.

Monotone and second-order-accurate schemes can be obtained by blending the linear
N and LDA schemes with an element-wise matrix Θe:

Φ
e,B
i = ΘeΦ

e,N
i + (I−Θe)Φe,LDA

i (13)

These kind of non-linear schemes (the matrix Θe depends upon the local solution) are
referred to as B schemes.

For thermochemical nonequilibrium flows, a conservative linearization is not available
and therefore a different approach, named Conservative Residual Distribution (CRD) 2 is
used. This kind of approach consists in calculating the flux integral by means of numerical
quadrature, thus avoiding the conservative linearization. Details on this specific issue can
be found in [28, 29]. The source terms residual is distributed in the same manner as the
convective residual.

After having applied the RD spatial discretization to the governing PDEs, one obtains
the following system of ODEs governing the pseudo-temporal evolution of the solution at
the node i:

VΩi

dU

dt
+Φc

i −ΦS
i = 0 (14)

where VΩi
is the volume of the median dual cell surrounding the node i.

Equation (14) is marched in pseudo-time until a steady state solution is reached using
a an implicit backward Euler integrator. The linear system is solved using one of the
iterative, preconditioned Krylov subspace algorithms available in the PETSc library [30].

4 RESULTS AND DISCUSSIONS

4.1 Hypersonic flow of an ideal gas past a circular cylinder

An hypersonic inviscid flow past a circular cylinder at freestream Mach number, M∞ =
20, has been considered as a first test case. Results for this same test case had already
been obtained by some of the authors [8] using the eulfs solver. Two different grids
with increasing spatial resolution have been used: they are shown in Fig. 1 while the

2CRD variants of the RD schemes are identified by a c character appended to the name of the scheme
(example LDAc).

6



R. Pepe et. al.

number of triangles and nodes are reported in Tab. 4.1. The shock-fitted grids differ
from the corresponding background ones because of the addition of the shock points; the
background grids have also been used for the calculations in which the shock is captured.
All the results obtained for the ideal inviscid gas flows have been carried out by means of
an explicit backward Euler time integration scheme.

Table 1: Characteristics of the grids used for the inviscid hypersonic flow over a circular cylinder.

coarse grid fine grid

Nodes Elements Nodes Elements
Background grid 351 610 5261 10151
Shock-fitted grid 411 654 5415 10229
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Figure 1: Coarse grid (left) and fine grid (right).

The comparison between the shock-capturing and shock-fitting results is shown in
Fig. 2, where pressure contour plots are shown for both the coarse and the fine grid
solutions. The non-linear B scheme has been used to obtain a nominally second-order-
accurate solution when the shock is captured, whereas the linear LDA scheme has been
used in the shock-fitting calculation. The use of a linear scheme in the shock-fitting
calculation is made possible by the fact that, when all shocks are fitted, the LDA scheme
is used only in smooth regions of the flow field.
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Figure 2: Pressure contour plot: comparison between the shock-fitting and shock-capturing second-
order-accurate accurate solutions obtained on the coarse (left) and the fine grid (right).

Figure 2 clearly shows that, using grids of comparable resolution, shock-fitting not only
avoids smearing the shock, but it also allows to obtain a much cleaner solution within the
entire shock layer characterized by a low numerical error also on the coarse mesh. It is
worth to observe that the shock-capturing solution computed on the coarse mesh features
a strong asymmetry with respect to the stagnation point, whereas this asymmetry is
completely absent in the shock-fitting solution computed on the corresponding coarse
mesh.

Finally, the results obtained for this same test-case by coupling the two different CFD
solvers, COOLFluiD and eulfs, with the same shock-fitting code, have been compared
in Fig. 3, where pressure iso-contour lines are displayed for both the fist-order-accurate N
and second-order-accurate LDA schemes. Not surprisingly, the results are superimposed
since the two codes implement the same FS discretization schemes.

4.2 Thermochemical nonequilibrium flow over a circular cylinder

The nonequilibrium shock-fitting algorithm has been tested by reference to the flow
conditions of Hornung’s experiment [32], listed in Tab. 4.2. The grid used is a obtained
by a 120×120 structured mesh cutting into two triangles each quadrilateral. The trian-
gulation is symmetric in the stagnation region, as shown in Fig. 4. The background mesh
is made of 14884 nodes and 29282 elements, the shock-fitting grid at steady-state, which
differs from the background triangulation only in the neighbourhood of the fitted shock,
has 15039 nodes and 29371 elements.
The numerical simulations were carried out for inviscid flow, since the purpose of this
study is to asses the capability of the unstructured shock-fitting technique to correctly
predict the shock position on blunt bodies in the case of thermochemical nonequilibrium
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Figure 3: Pressure contour plot for the shock fitting solutions: comparison between COOLFluiD and
eulfs solutions.

flows. Since the PDEs governing dissociating nitrogen can be very stiff, it has been nec-
essary to use the implicit backward Euler scheme to obtain the steady-state solution.
As shown in Fig. 5, the shock-wall distance agrees reasonably well with the experimental
results obtained by Hornung. In Fig. 6 the pressure contour plot computed using the first-
order-accurate Nc scheme is compared with the one obtained by Wang and Zhong [33]
using a third-order-accurate finite difference shock fitting scheme on structured meshes.
The good agreement between the two solutions obtained by the two different schemes
with different order of accuracy proves that both the solutions are grid-independent, i.e.
characterized by a very low numerical error.

Table 2: Freestream conditions for a nitrogen flow around a 1 inch radius cylinder.

Physical quantity M∞ p∞ [Pa] T∞ [K] Tv∞ [K] u∞ [m/s] αN∞

Free-stream Value 6.13 2908.0 1833.0 1833.0 5594.0 0.07
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Figure 4: Grid used for the Nitrogen flow over a circular cylinder.
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Figure 5: Non-dimensional shock-wall distance: COOLFluiD + SF vs. Hornung’s experimental mea-
surements. θ is the azimuthal angle which takes value 0 at the stagnation point, ∆/R is the shock-wall
distance divided by the cilinder’s radius.
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Figure 6: Pressure contour plot: COOLFluiD + SF (left) vs. ref. [33] (right). Hornung’s experimental
measurements of the shock standoff distance are represented by the red circles.

5 CONCLUSIONS

A modular shock-fitting algorithm for unstructured meshes was coupled with the VKI’s
COOLFluiD code. This operation demonstrated the high modularity of the unstructured
shock-fitting algorithm and, in the same time, allowed a complete extension of the pro-
posed shock-fitting to thermochemical non-equilibrium flows.

The resulting code was tested on several high speed flows past a circular cylinder
assuming the working gas as a perfect gas and as a real gas in thermochemical non-
equilibrium. Results confirm that shock-fitting not only allows a better modelling of the
bow shock providing a good estimate of the position of the bow shock, but also improves
the solution quality within the entire shock-layer.
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[32] H. G. Hornung, Non-equilibrium dissociating nitrogen flow over spheres and circular cylinder, Journal of Fluid Mechanics, Vol. 53(1),
149-176, 1972.

[33] X. Wang and X. Zhong, A High-Order Shock-Fitting Non-Equilibrium Flow Solver for DNS of Strong Shock and Turbulence Interactions,
7th International Conference on Computational Fluid Dynamics, ICCFD7-2305, Big Island, Hawaii, 2012.

12


