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Abstract. A multitude of composite materials ranging from polycrystals up to concrete
and masonry–like materials overwhelmingly display random morphologies. In this work
we propose a statistically–based multiscale procedure which allow us to simulate the ac-
tual microstructure of a two–dimensional and two–phase random medium and to estimate
the elastic moduli of the energy equivalent homogeneous micropolar continuum. This pro-
cedure uses finite–size scaling of Statistical Volume Elements (SVEs) and approaches the
so–called Representative Volume Element (RVE) through two hierarchies of constitutive
bounds, respectively stemming from the numerical solution of Dirichlet and Neumann
non-classical boundary value problems, set up on mesoscale material cells. The results
of the performed numerical simulations point out the worthiness of accounting spatial
randomness as well as the additional degrees of freedom of the Cosserat continuum.

1 INTRODUCTION

Several composite materials, extensively adopted in many engineering fields, are char-
acterized by particulate random microstructures. Examples are polymer, ceramic, metal
matrix composites or also concrete, granular materials and porous rocks (Figure 1).

A key issue in mechanics of materials characterized by microstructural randomness
is that the classical concept of the Representative Volume Element (RVE), well estab-
lished in periodicity based homogenization techniques since many years [16, 9], loses its
validity [11]. In the last few years, various procedures based on the solution of specific
Boundary Value Problems (BVPs) have been proposed to perform classical homogeniza-
tion for non–periodic assemblies [17, 3, 14, 1, 15]. In order to account for the effects of
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Figure 1: Examples of particulate composites.

the microstructural size, heterogeneous non–periodic materials have been also studied by
extending the homogenization schemes to gradient–enhanced continua, although applied
to a single fixed mesoscale [5, 6]. Stocastic approaches based on finite–size scaling ho-
mogenization have proved to be among the most effective for individuating the RVE size
and the overall constitutive moduli in the linear elastic and thermoelastic, as well as in
the non–linear and non–elastic, frame [10, 4, 12].

In this paper we adopt the statistically–based scale–dependent homogenization proce-
dure developed in [18], which enables to simulate the actual microstructure of a simplified
two–phase random media and to estimate the constitutive moduli of energy equivalent mi-
cropolar continua. This procedure uses finite–size scaling of Statistical Volume Elements
(SVEs) and approaches the so–called Representative Volume Element (RVE) through
two hierarchies of constitutive bounds, respectively stemming from the numerical solu-
tion of Dirichlet and Neumann non classical boundary value problems, set up on mesoscale
material cells. For defining these problems we use a generalized macro-homogeneity (Hill–
Mandel type [2]) condition, which accounts for non–symmetric stress and strain as well as
couple–stress and curvature tensors. In particular, for a two–dimensional elastic medium
made of a base matrix and a random distribution of disk–shaped inclusions of given
density, two hierarchies of constitutive bounds are obtained by considering mesoscale
test–windows of different sizes supposed placed anywhere in a random material domain.
Under the hypotheses of statistical homogeneity and mean–ergodicity of the medium: the
convergence trend of the bounds is detected as function of the SVE size; the RVE size
is attained on the basis of a statistical criterion; the average homogenized, classical and
micropolar, elastic moduli are estimated.

The results of the simulations performed point out the importance of taking into ac-
count the spatial randomness of the medium, and in particular the presence of inclusions
that intersect the edges of the test windows. The worthiness of accounting the additional
stress and strain measures of the Cosserat continuum is also discussed.

2 MICROPOLAR CONTINUUM

A material point of a micropolar continuum is characterized by a position and an
orientation; the kinematical descriptors are displacements and rotations, represented by
the vectors (ui) and (ϕi), respectively. Within the framework of a linearized theory, in
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which displacements and rotations stand for velocities and angular velocities, respectively,
and works for rate of works, the kinematics of the continuum is governed by the following
relations:

γij = ui,j − ekijϕk,

κij = ϕi,j. (1)

where (γij) and (κij) are the generally asymmetric strain and curvature tensors, respec-
tively, and where eijk is the Levi–Civita tensor, with i, j, k = 1, 3. The balance equations
in the absence of body forces and couples are:

τij,j = 0,

µkj,j + ekjiτij = 0 , (2)

where (τij) and (µkj) are respectively the generally asymmetric stress and couple stress
tensors. Denoting with (ti) and (mi) the tractions and surface couples on the boundary
of a control volume of outward normal (ni), always with i, j = 1, 3, we also have:

ti = τij nj ,

mi = µij nj . (3)

In order to separately investigate the classical and micropolar components we divide
the strain and stress tensors in their symmetric and skew-symmetric part. That is:

γij = εij + αij ,

τij = σij + βij . (4)

where (εij) and (σij) are the classical symmetric strain and stress tensors, while (αji)
and (βji) are the skew–symmetric strain and stress tensors characterizing, together with
the curvature and the couple stress tensor (κji) and (µji), a micropolar medium. In
particular, αji = 1

2
(ui,j − uj,i)− ekjiϕk is the relative rotation between the macrorotation

and microrotation.
The constitutive relations in the linear elastic anisotropic case are:

σij = AY Y
ijhkεhk + AY K

ijhkαhk + AY C
ijhkkhk

βij = AKY
ijhkεhk + AKK

ijhkαhk + AKC
ijhkkhk

µij = ACY
ijhkεhk + ACK

ijhkαhk + ACC
ijhkkhk ,

(5)
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where (AY Y
ijhk) is the classical constitutive tensor, while (AY K

ijhk), (AKY
ijhk), (AKK

ijhk), (AY C
ijhk),

(AKC
ijhk), (ACY

ijhk), (ACK
ijhk) and (ACC

ijhk) are the micropolar constitutive tensors (i, j, h, k =
1, 3). For hyperelastic materials: AY Y

ijhk= AY Y
hkij, AKK

ijhk= AKK
hkij , ACC

ijhk= ACC
hkij, AY K

ijhk= AKY
hkij,

AY C
ijhk= ACY

hkij and AKC
ijhk= ACK

hkij.

3 COMPUTATIONAL HOMOGENIZATION FOR RANDOM COMPOS-

ITES

We study the scale-dependent effective response of heterogeneous random materials
described as two–dimensional and two–phase composites, under the assumption that the
medium is characterized by statistical homogeneity and mean–ergodicity.

We consider a simplified model made of a base matrix with randomly distributed disk–
shaped inclusions of fixed radius d= 10−3 [mm] and nominal volume fraction ρ= 40%. Two
material cases represented in Figure 2 are considered: (a) stiff inclusions in a soft matrix
and (b) soft inclusions in a stiff matrix. For instance, the former case can be considered
representative of Metal Ceramic Composites (MCC) materials, while the latter can be
considered representative of porous Ceramic Matrix Composites (CMC).

Figure 2: Scheme of material case studies

In the heterogeneous medium both phases are linear elastic and isotropic characterized
by the stress–strain relations:

σij = λεiiδij + 2µεij

βij = 2µcαij

µ3j = 2µcl
2
ck3j

(6)

(i, j= 1,2) where λ and µ are the Lamé constants, µc is the micropolar shear modulus,
and lc is the so–called characteristic length, responsible for the rotational stiffness. The
adopted material parameters are reported in Table 1.
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Material Parameters

λ[GPa] µ[GPa] µc[GPa] lc[mm]

a matrix 9.31 21.74 21.74 10−5

particles 428.5 107.4 107.4 10−4

b matrix 428.5 107.4 107.4 10−4

particles 9.31 21.74 21.74 10−5

Table 1: Material parameters.

To determine the components of the homogenenized continuum constitutive tensors
and to detect the RVE size, we follow the statistical procedure presented in [18].

Let us introduce a mesoscale window Bδ of size L and characterize this by a dimen-
sionless parameter:

δ =
L

d
.

For each δ we generate particle distribution by a hard–core Poisson point field (not allow-
ing for disks’ overlaps): we determine the number of disks and simulate (uniform) random
dispositions of disks’ centers; that is the realizations of portions of random medium sam-
pled in a Monte–Carlo sense.

For each realization of Bδ we solve Dirichlet and Neumann classical and micropolar
Boundary Value Problems (BVPs), consistently with a generalized macrohomogeneity
condition which account for the presence of infinitesimal deformation gradients and cur-
vatures:

1

V

∫

Bδ

(σijεij + βijαij + µijκij)dV = σijεij + βijαij + µijκij , (7)

where V is the volume of Bδ and the overlined symbols define homogenized macroscopic
measures, with the meaning of volume average quantities. The condition (7), in which
the contributions of the classical and micropolar variables are considered separately, es-
tablishes a correspondence between the average internal work over a mesoscale window
and the mechanical internal work density of the macromodel, expressed in terms of ho-
mogenized stress and strain measures.

The Dirichlet boundary conditions (D–BCs) consistent with the condition (7), can be
written:

ui = εijxj, ϕi =
1

2
ekjiαkj + κijxj on ∂Bδ . (8)
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And the Neumann boundary conditions (N–BCs):

ti = (σij + βij)nj , mi = mo
i + µjinj on ∂Bδ , (9)

where mo
i = −

∫

∂B

eijlxjβklnk is the moment imposed to ensure the moment balance in

the presence of skew–symmetric shear.

The realizations of Bδ and the BVPs solutions are repeated until the confidence interval
of the average homogenized constitutive parameters set at 95%, evaluated over a normal
standard distribution, is less than a small desired value. Then we increase δ and repeat
the previous simulations.

The procedure stops when the number of realizations necessary for ensuring the re-
quirement of the confidence interval is not greater than 5. This means that the values
of the homogenized constitutive coefficients are distributed around their average with a
vanishing coefficient of variation and that the RVE size (δRV E) is achieved. The RVE
corresponds to the minimum window size at which estimate the homogenized material
moduli with a tolerance interval less than 0.5%.

The BVPs are numerically solved using COMSOL Multiphysicsr, a finite element code
that enables one to directly implement the partial differential equations for the specific
problem to investigate. Unstructured meshes of quadratic Lagrangian triangular Finite
Elements are adopted.

The homogenized model is generally anisotropic and the constitutive coefficients are
those reported in Equation (5). In the following we focus our attention on the most

significant components of (A
Y Y

ijhk), (A
KK

ijhk) and (A
CC

ijhk) and consider the elastic coefficients:

A
Y Y

= (A1111 + A2222)/2, classical; A
KK

= A
KK

1212 and A
CC

= trA
CC

, micropolar.
The mesoscale window Bδ ideally corresponds to a portion of the actual random medium

in which inclusions are not prevented from intersecting the window edges. Thus, the
numerical simulations are performed by taking into account non-homogeneous boundaries
(crossing inclusions). We also consider the less realistic case of homogeneous boundaries
(non–crossing inclusions). The comparison between the homogenized responses obtained
by performing numerical simulations for the two cases, either applying Dirichlet and
Neumann boundary conditions, allows us to emphasize the influence of positions of the
inclusions with respect to the window’s boundary.

Figure 3 reports the average of the classical coefficient A
Y Y

versus the scale parameter δ,
for both materials (a) and (b). This value is normalized to the average of the convergence

coefficient evaluated in the case of crossing inclusions, A
Y Y

RV E . It can be noticed the
convergence trend in the case of inclusions that cross or do not cross the window boundary.
In particular, for the material (a) δRV E is equal to 20 in the case of crossing inclusions,
while it is δRV E = 25 in the case of non–crossing inclusions. The material (b) shows a
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slower convergence trend. Accordingly, the RVE is attained for δRV E = 25 in the case of
crossing inclusions, while in the case of non–crossing inclusions δRV E > 25.

Figure 4 reports the micropolar results in terms of the average of the coefficient A
KK

(normalized to the average convergence value < A
KK

RV E >) versus the scale parameter
δ, always for both materials (a) and (b). The two materials exhibit convergence trends

similar to the coefficient A
Y Y

. It can be also referred that A
KK

RV E does not vanish as δ
increases, pointing out that this micropolar moduli is significant also in the presence of
inclusions of small size.

Figure 5 shows the micropolar results in terms of the average of the homogenized

characteristic length parameter lc =

√

A
CC

/A
KK

(normalized to the average convergence

value < lcRV E >) versus the scale parameter δ. Both materials exhibit differences between
the curves obtained in the case of crossing and non–crossing inclusions greater than in
the classical case. For the material (a) the RVE is attained at δRV E = 15 in the case
of crossing inclusions and at δRV E = 20 in the case of non–crossing inclusions. For the
material (b) the RVE is attained at δRV E = 20 in the case of crossing inclusions and at
δRV E = 25 in the case of non–crossing inclusions. In can be referred moreover, that for
both materials < lc >, when δ increases, tends to the value of the characteristic length
lc of the matrix: material (a) < lcRV E >= 0.1); material (b) < lcRV E >= 1. This shows
micropolar bending effects weaker in the medium (a) than in the medium (b). These
findings are in agreement with some experimental and analytical results [7, 8].
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Figure 3: Effective average classical constitutive parameters < A
Y Y

> (normalized to < A
Y Y

RV E
>)

versus the scale parameter δ. Material (a) (left side); material (b) (right side). D–BC (Dirichlet BC),
N–BC (Neumann BC), cr (crossing inclusions), n–cr (non crossing inclusions).
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Figure 4: Effective average micropolar constitutive parameters < A
KK

> (normalized to < A
KK

RV E >)
versus the scale parameter δ. Material (a) (left side); material (b) (right side). D–BC (Dirichlet BC),
N–BC (Neumann BC), cr (crossing inclusions), n–cr (non crossing inclusions).
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Figure 5: Effective average micropolar constitutive parameters < lc >=<

√

A
CC

/A
KK

> (normalized

to < lcRV E >) versus the scale parameter δ. Material (a) (left side); material (b) (right side).

D–BC (Dirichlet BC), N–BC (Neumann BC), cr (crossing inclusions), n–cr (non crossing
inclusions).
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4 FINAL REMARKS

In this work we study the scale–dependent homogenization of composite materials
made of random distribution of inclusions in a matrix. Two sample cases are studied: (a)
stiff inclusions embedded in a soft matrix; and (b) soft inclusions in a stiff matrix. For
the numerical simulations we consider two cases: windows with inclusions intersecting
the edges and windows with inclusions which do not intersect the edges (homogeneous
boundary). The simulations in the two cases yield different convergence trends and values,
both for the classical and mainly for the micropolar constitutive coefficients. These results
indicates that the true random case of heterogeneous boundary should be accounted for
in the homogenization processes.

The RVE size obtained in the micropolar material is smaller than the RVE size of a
classical material. Moreover, the curvature effects show to be less significant in the case
of material (a), with inclusions stiffer than matrix, than in the case of material (b), with
inclusions softer than the matrix. Nevertheless, the elastic moduli relating the relative
rotation to the skew–symmetric part of the shear stress, never vanishes as the window
size increases. This entails that the micropolar effects cannot be neglected in the pres-
ence of non–symmetric strain and shear effects. Like in the in the widely investigated
case of anisotropic periodic materials [13, 19]. Further confirmations of the suitability of
micropolar model are expected with the investigation of media with particles of different
shapes and also with the investigation of non–linear constitutive behaviour.
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