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Abstract. In the present article numerical algorithms are adopted for the computational
modeling of plasticity problems with nonlinear kinematic hardening rules. A solution
procedure which preserves a quadratic rate of asymptotic convergence is used for the sim-
ulation of plasticity with nonlinear kinematic hardening. Computational applications and
numerical results are illustrated. A comparative analysis is made between the adoption
of the assumptions of linear versus nonlinear kinematic hardening rule by considering
different types of material properties.

1 INTRODUCTION

Computational modeling of rate independent plasticity has nowadays achieved signifi-
cant improvements, both in the proper formulation of the theoretical laws governing the
inelastic behavior and in the definition of the numerical procedures for the integration of
the boundary value problem, see among others Simo and Hughes [1] and Zienkiewicz Tay-
lor and Fox [2]. In the numerical integration of rate independent plasticity problems the
assumption of a linear kinematic hardening behavior is often adopted. This assumption
proves to be advantageous from the numerical point of view since it often provides nu-
merical algorithms characterized by computational efficiency and a symmetric tangential
stiffness matrix. Nevertheless, in the last decades in the literature it has been outlined
the necessity of adopting nonlinear kinematic hardening rules in order to properly model
experiments on real materials, see e.g. Armstrong and Frederick [3], Dafalias and Popov
[4], McDowell [5], Chaboche [6], Lubliner et al. [7]. This is especially true under cyclic
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loading conditions and when simulating experiments on solid materials subject to load-
ing unloading and reloading processes, see for instance Chaboche [8] and Auricchio and
Taylor [9]. For a review paper see e.g. Chaboche [10].

However, the adoption of nonlinear kinematic hardening rules for plasticity models is
not a trivial task to be accomplished in the computational procedures. In fact it poses
a number of challenges if a fast and robust computational solution is to be pursued. As
a matter of fact the investigation of fast and robust integration methods for nonlinear
kinematic hardening models and complex loading conditions currently represents an ac-
tive topic of research. At this regard see for instance Auricchio and Taylor [9], Chaboche
and Cailletaud [11], Hartmann et al. [12], Dettmer and Reese [13], Nukala [14], Arti-
oli et al. [15]. In the present article an integration scheme is applied which preserves
a quadratic rate of asymptotic convergence in the simulation of plasticity models with
nonlinear kinematic hardening laws. A comparative analysis is made between the linear
and the nonlinear kinematic hardening assumption by selecting different types of material
parameters. Some considerations are presented regarding the applicability of linear and
nonlinear kinematic hardening rules in the computational simulation of material behav-
ior. Finally, computational applications and numerical results are reported in order to
illustrate the effectiveness of the algorithmic procedure.

2 THE CONTINUUM EVOLUTIVE MODEL

We consider the body B in the reference configuration Ω ⊂ ℜn, with 1 ≤ n ≤ 3. Let us
indicate with T ⊂ ℜ+ the time interval of interest and with V the space of displacements,
D the strain space and S the dual stress space. We also denote by u : Ω × T → V the
displacement and by σ : Ω × T → S the stress tensor. The compatible strain tensor is
defined by ε = ∇su : Ω × T → D, where ∇s is the symmetric part of the gradient.

The stress tensor is assumed to be additively decomposed into the deviatoric and
spherical parts

σ = s+ p1, (1)

where s = devσ = σ − p1 is the stress deviator, p = 1
3
tr(σ) is the pressure of the

spherical part p1 and 1 is the rank two identity tensor. The strain tensor is accordingly
decomposed into the deviatoric and volumetric parts

ε = e+
1

3
θ 1, (2)

where e = devε = ε− 1
3
θ 1 is the strain deviator and θ is the change in volume.

The elastic relation between the volumetric part of the stress and the volumetric part
of the strain is expressed by

p = K θ, (3)
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where K is the bulk modulus.
The linear elastic relation between the deviatoric stress and the elastic deviatoric strain

is given by

s = 2G ee = 2G[e− ep], (4)

where G is the shear modulus and the deviatoric strain is additively decomposed into the
elastic and the plastic part, according to e = ee + ep.
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Figure 1: Cyclic loading program in tension-compression with increasing mean stress.

The relative stress Σ is expressed by

Σ = s−α, (5)

where α represents the deviatoric back stress.
We consider the equations governing the behavior of a J2 material model. Consequently,

a von Mises yield criterion is adopted in the form

f (σ,α, κ) = ∥devσ −α∥ − κ(χiso) = ∥s−α∥ −
√

2

3
(σyo + χiso) ≤ 0, (6)

where κ(χiso) =
√

2
3
σy =

√
2
3
(σyo+χiso) represents the current radius of the yield surface

in the deviatoric plane and σyo denotes the uniaxial yield stress of the virgin material.
For a linear isotropic hardening behavior the static internal variable related to isotropic
hardening is specified by χiso = H isoe

p, where the dual kinematic internal variable ep

represents the equivalent (accumulated) plastic strain ep =

∫
0

t√
2
3
∥ėp∥d t.
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Figure 2: Cyclic loading condition in tension-compression for the steel X5CrNi 18·9 (loading program
given in fig.1). Comparison between linear kinematic hardening (LKH) and nonlinear kinematic hardening
(NLKH) in plasticity.

For nonlinear isotropic hardening it is often assumed

χiso = Hiso(e
p)m, or R = R∞(1− e−b ep), (7)

where m, R∞ and b are material parameters.
For associative plasticity the evolutive flow law for the deviatoric plastic strain is ex-

pressed by

ėp = γ̇
∂f

∂σ
= γ̇

∂f

∂Σ
= γ̇ n, (8)

where γ̇ is the plastic multiplier and the second rank tensor n is defined by

n =
Σ

∥Σ∥
(9)

and it has unit norm.
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The equivalent plastic strain rate is accordingly given by

ėp =

√
2

3
γ̇. (10)

The back stress rate is expressed in the assumption of linear kinematic hardening
behavior by

α̇ =
2

3
Hkin ė

p. (11)
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Figure 3: Cyclic loading program with increasing levels of loading.

In the literature for the nonlinear kinematic hardening behavior it is often adopted the
relation originally proposed by Armstrong and Frederick [3]

α̇ =
2

3
Hkin ė

p −Hnl ė
pα, (12)

where Hnl is a non-dimensional material dependent parameter characterizing nonlinear
kinematic hardening behavior and Hnl = 0 stands for linear kinematic hardening.

A better approximation of the nonlinear kinematic hardening behavior results in adding
several components of the back stress, with different recall constants, see e.g. Chaboche
[10],

α =
M∑
i=1

αi, α̇i =
2
3
Hkin,i ė

p −Hnl,i ė
pαi. (13)

3 NUMERICAL RESULTS

The investigation for fast and robust integration methods relative to nonlinear kine-
matic hardening models is currently a topic of active research in the literature. In the
present paper an efficient solution procedure is used which preserves the quadratic rate
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of asymptotic convergence typical of Newton’s schemes. The procedure is illustrated in
detail in De Angelis and Taylor [16] where the development of the associated consistent
tangent operator is also addressed for nonlinear kinematic hardening plasticity.
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Figure 4: Cyclic loading condition with increasing levels of loading for the steel X5CrNi 18·9 (loading
program given in fig.3). Comparison between linear kinematic hardening (LKH) and nonlinear kinematic
hardening (NLKH) in plasticity.

In the sequel, by adopting the numerical integration procedure reported in detail in
[16], a comparative analysis between the linear and the nonlinear kinematic hardening
assumption is illustrated and discussed.

The numerical simulations are performed by using a three-dimensional finite element,
based on a mixed approach (Simo et al. [17]) and implemented into the Finite Element
Analysis Program (FEAP), see Zienkiewicz Taylor and Fox [2] and Taylor [18].

In the numerical tests a cubic specimen of side length set equal to 5 is loaded by
imposing a uniform displacement at the top boundary of the specimen and with the
appropriate boundary conditions. The sample is modeled with only one element. In the
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numerical examples different types of material properties have been assumed in order to
analyze the effectiveness of the adoption of a linear versus a nonlinear kinematic hardening
rule for the simulation of the material constitutive behavior.
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Figure 5: Cyclic loading conditions in tension-compression for the mild steel Ck 15 (loading program
given in fig.1). Comparison between linear kinematic hardening (LKH) and nonlinear kinematic hardening
(NLKH) in plasticity.

3.1 Example 1

We consider as a first example the material properties which identify the steel X5CrNi
18·9, see e.g. Hartmann et al. [12]. The material properties are: elastic modulus
E = 208000 MPa, Poisson’s ratio ν = 0.3, yield limit σyo = 170 MPa, kinematic hard-
ening modulus Hkin = 41080 MPa, nonlinear kinematic hardening parameter Hnl = 525,
isotropic hardening modulus H iso = 0 MPa. The prescribed displacement at the top
boundary has been set equal to uo = 0.001. The evolution with time of the proportional
load coefficient p(t) amplifies the prescribed displacement and describes the loading his-
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tory according to relation u(t) = p(t)uo.
A cyclic loading program in tension-compression with increasing mean stress has been

performed by adopting the loading history reported in Figure 1. The related stress-strain
curves are illustrated in Figure 2, which also shows the comparison of a linear kinematic
hardening behavior (LKH) and a nonlinear kinematic hardening behavior (NLKH).

A cyclic loading history with increasing levels of loading is given in Figure 3. For
this cyclic loading condition the stress-strain curves are illustrated in Figure 4 with the
comparison of linear kinematic hardening rule (LKH) and nonlinear kinematic hardening
rule (NLKH) in plasticity.
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Figure 6: Cyclic loading conditions with increasing levels of loading for the mild steel Ck 15 (loading
program given in fig.3). Comparison between linear kinematic hardening (LKH) and nonlinear kinematic
hardening (NLKH) in plasticity.
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3.2 Example 2

We consider as a second example the material properties which identify the mild steel
Ck15, see Dettmer and Reese [13] and Lührs et al. [19]. The material properties are:
elastic modulus E = 208000 MPa, Poisson’s ratio ν = 0.3, yield limit σyo = 300 MPa,
kinematic hardening modulus Hkin = 1900 MPa, nonlinear kinematic hardening parame-
ter Hnl = 8.5, isotropic hardening modulus H iso = 0 MPa. The prescribed displacement
at the top boundary has been set equal to uo = 0.01. The evolution with time of the
proportional load coefficient p(t) describes the loading history u(t) = p(t)uo.

The cyclic loading program in tension-compression given in Figure 1 has been adopted
for the numerical simulation. The related stress-strain curves for the linear kinematic
hardening behavior (LKH) and the nonlinear kinematic hardening behavior (NLKH) are
reported in Figure 5.

Furtherly, the cyclic loading program with increasing levels of loading has been as-
signed as illustrated in Figure 3. For this cyclic loading condition the stress-strain curves
are reported in Figure 6. For the assigned material properties Figure 6 also illustrates
the comparison of a linear kinematic hardening rule (LKH) and a nonlinear kinematic
hardening rule (NLKH) in plasticity.

4 CONCLUSIONS

In finite element applications linear kinematic hardening rules are frequently adopted
in plasticity since this assumption ensures a symmetric tangent stiffness matrix and com-
putationally efficient solution procedures. However, in the last years, in the literature it
has been outlined the necessity of adopting nonlinear kinematic hardening rules in order
to properly simulate experiments on real materials.

In the present article a numerical approach has been adopted for the computational
simulation of nonlinear kinematic hardening rules in plasticity, see [16] for more details.
The numerical approach is characterized by efficiency and effectiveness by preserving a
quadratic rate of asymptotic convergence in the finite element solution procedure. Nu-
merical examples and applications have been shown in order to illustrate the suitability
of the approach to plasticity problems with nonlinear kinematic hardening rules. Compu-
tational applications and numerical results have been reported by applying the proposed
procedure to different materials. A comparative analysis has been presented for the dif-
ferent material properties between the assumptions of linear versus nonlinear kinematic
hardening laws. The performed analysis allows to have a better insight on the condi-
tions upon which the adoption of the assumption of a linear versus a nonlinear kinematic
hardening rule may be considered as effective.
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