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Abstract. A meshless method suitable for investigation of wave propagation and diffrac-
tion problems for layered structures with local inhomogeneities is presented. The approach
is based on the use of fundamental solutions for the layered structure as a whole. The
corresponding basis functions, called laminate elements, satisfy identically the governing
equations in the sublayers and all interface and boundary conditions on the plane-parallel
surfaces. Thus, only conditions on the obstacle boundaries are to be approximated. With
the approach presented, guided wave diffraction by plane and volumetric obstacles in
laminate plates is investigated.

1 INTRODUCTION

Theoretical and experimental investigations on elastic guided wave (GW) interaction
with various obstacles in lengthy laminate structures have wide applications in seismology,
non-destructive evaluation and structural health monitoring. In engineering practice finite
element (FEM) or finite difference (FDM) methods based on a mesh discretization of the
waveguide structure are widely utilized for the numerical simulation of wave propagation
phenomena. With increasing distances or frequency, these approaches require more and
more elements and, as a consequence, become time and, especially, memory consuming.
Additional computational costs are also connected with possible sharp difference among
the elastic properties of sublayers as well as with a complex wave structure resulting
from repeated reflections and refractions at the interfaces and defects. Therefore, efficient
modifications of these techniques allowing significant reduction of computation costs have
been recently developed and successfully implemented. For example, these are the spectral
element method (SEM) [1], which is a high-order FEM, or the local interaction-simulation
approach (LISA) [2] utilizing special finite-difference approximations.
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As an alternative, various hybrid approaches such as a coupling of mesh-based approx-
imations for areas adjacent to edges or inhomogeneities with the Lamb wave expansions
are currently under intensive development [3]. Explicit analytical GW representations do
not require any spatial discretization, and so they remain practically costless irrespective
of the sample’s size. Therefore, combining mesh or boundary-element discretization of
local areas with an analytically-based continuation of incident and scattered wave fields
among them may lead to sufficient reduction of computational costs.
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Figure 1: Comparison of the conventional MFS-BEM and LEM approaches to elastodynamic problems
for layered waveguides with obstacles

For plate-like waveguides with localized obstacles there exists a way to avoid such a
coupling. This approach called the laminate element method (LEM) [4] is a special case of
the method of fundamental solutions (MFS). In contrast to the conventional MFS, which
is based on classical fundamental solutions for a homogeneous elastic space, the LEM
utilizes the fundamental solutions for the elastic layered structure under consideration
as a whole. Such basis functions called laminate elements (LEs) identically satisfy the
governing equations in the sub-layers and the homogeneous boundary conditions at all
plane-parallel surfaces and interfaces. Therefore, only conditions on the remaining non-
planar parts of the domain’s boundary, e.g., at obstacle boundaries, surface irregularities
or structural edges, are to be approximated by LEs (Fig. 1). This property considerably
reduces the number of basis functions and thereby the computational expenses. It makes
this method well-suitable for independent validation of various direct or hybrid numerical
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methods and enables efficient simulations of GW propagation and diffraction problems,
especially in lengthy and expanded structures with different localized scatterers.

This technique as well as other LEM peculiarities are to be discussed and illustrated
by the application to structural health monitoring (SHM) problems. In particular, guided
wave diffraction by plane and volumetric obstacles such as rigid inclusions, holes and sur-
face irregularities has been investigated. Examples of FEM and experimental verification
of the proposed approaches are presented as well.

2 LAMINATE ELEMENT METHOD

Let us consider time-harmonic oscillations ue−iωt, u = {ux, uy, uz} of an M-layered
linear elastic waveguide of thickness H with surface or internal localized inhomogeneities,
governed by the elastodynamic equations in displacements with different elastic parame-
ters for each layer. In the Cartesian coordinate system x = (x, y, z) the structure occupies

the domain D =
M∪

m=1

Dm, where Dm = {|x, y| < ∞, zm+1 ≤ z ≤ zm} are sublayers,

z1 = 0, zM+1 = −H. Below, the harmonic multiplier e−iωt is conventionally omitted. The
exterior plane-parallel surfaces z = 0 and z = −H are stress free except, possibly, at a
local source zone S0 to which load q is applied; displacement and traction continuity is as-
sumed at all internal plane-parallel boundaries. Obstacle boundaries are further denoted
by S. Schematic geometry of the problem in 3D and 2D cases is shown in Fig. 2.
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Figure 2: Geometry of the problem in 3D (left) and 2D (right) cases

In contrast to the classical fundamental solutions or boundary elements, which utilize
the matrix of fundamental solutions (Green’s matrix) g(x, ξ) for an infinite homogeneous
elastic space [5], laminate elements are based on the fundamental matrices l(x, ξ) derived
for an infinite laminate plate or half-space as a whole. The columns of the matrix are
displacement vectors uj associated with point sources δ(x− ξ)ij directed along the coor-
dinate unit vectors ij, j = 1, 2, 3. Here ξ = (ξ1, ξ2, ξ3) is a point of source location. The
basis vectors i1 and i2 are taken to be parallel to the laminate’s boundary planes, while
i3 is orthogonal to its surface.

Within the geometry considered, the matrix l(x, ξ) can be represented in terms of
the inverse Fourier transform F−1

xy with respect to the horizontal coordinates x, y via the
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Fourier symbol L(α1, α2, z) = F [l(x)]:

l(x) = F−1
xy [L] ≡

1

4π2

∫
Γ1

∫
Γ2

L(α1, α2, z)e
−i(α1x+α2y)dα1dα2 (1)

The integration contours Γ1 and Γ2 go along the real axes α1 and α2 deviating into the
complex planes for rounding real poles ζk of the integrand in accordance with the limiting
absorption principle.

A key point of successful LEM implementation is the development of efficient algorithms
for layered fundamental solution l(x, ξ) calculation. Two of them, based on fast and
stable numerical schemes for Green’s matrix k(x, ξ) calculation in multilayered isotropic
or anisotropic waveguides have been developed by the authors [6, 7]. In the first algorithm,
the matrix l(x, ξ) is constructed as a composition of the conventional fundamental solution
matrix g(x, ξ) with the properties of the layer, in which the source is located, and non-
singular matrix v(x), accountig for the fields reflected from the interfaces and external
sides and providing homogeneous boundary conditions at internal and exterior plane-
parallel boundaries: l = g + v. The matrix v, in its turn, is further decomposed into four
(or three, in case of the first or the last sublayers) terms; each of them, being derived in
terms of Green’s matrix for the considered layered waveguide with a point displacement or
stress jump at the correspond internal boundary, stands for the displacements or tractions
caused at the interlaminar boundaries by g(x, ξ) columns.

In the alternative scheme, an additional plane-parallel boundary passing through the
vertical coordinate of the point source is introduced, increasing the number of layers by
one. In this case, the columns of l(x, ξ) matrix are the wave fields generated by point
stress jumps along ij, j = 1, 2, 3 directions at this fictitious boundary. It allows applying
well-developed Green’s matrix calculation algorithms without any modification.

A fast numerical integration of integrals (1) is a challenging problem as well. Even
with contemporary powerful computers a straight numerical integration could hardly yield
proper results. On the other hand, the level of computer expenses is radically reduced after
certain analytical preprocessing using the complex variable theory, residual technique,
special functions and asymptotics. Finally the integral representations for matrices l(x)
are brought to close analytical formulas involving cylindrical Bessel functions (for 3D
cases) and residuals of the matrix L elements at the real and complex poles ζk. The latter
have to be found and calculated beforehand. Thus the crucial points allowing one to
handle efficiently integrals (1) are the efficient implementation of algorithms for matrix L
computation together with fast and reliable methods of searching for complex poles and
calculating residuals for functions given numerically.

As soon as layered fundamental solution l(x, ξ) is obtained, the displacement field
u(x) caused in a laminate sample with possible local inhomogeneities (defects) by a given
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load q may be sought for in the form

u = u0 + usc, usc ≈
N∑
j=1

lj(x)cj, (2)

where u0 is an incident field generated by q in the infinite laminate plate without defects,
and usc is an additional field arising due to u0 scattering by local defects (cracks, void, in-
clusions, surface irregularities, etc.) and/or the plate’s edges (for finite samples). Whereas
a close analytical representation for u0 is easily derived using the integral transform Fxy

applied to the equations and boundary conditions for the infinite defectless structure, usc

is approximated by a sum of LEs consisting of the fundamental matrices lj(x) = l(x, ξj)
and unknown vector coefficients cj. In accordance with the MFS general scheme the latter
have to be chosen to minimize the discrepancy of the boundary conditions on the surface
of scatterers S. For that the LE centers ξj are allocated along S at a certain distance d
from this surface. Since x = ξj are singular points of the matrices lj(x), one must put ξj
outside the sample domain D, in which the field usc is approximated by LE sum (2).

It is worthy to note that since matrix l may be written as the sum l = g+v its elements
bear the same singularity at x = ξ as that of the matrix of fundamental solutions used for
classical BEs (matrix v has no singularities). In that way, the most of methods derived for
operating with singular BEs may be used for LEM computations as well. In particular,
l(x, ξ) may be used as a singular matrix kernel of the boundary integral representation in
the context of indirect integral approach

usc(x) =

∫∫
S

l(x, ξ)c(s)ds,

in which ξ = ξ(s) ran over the surface S. Its discretization, for example in line with
boundary element technique, lead to the following approximation of the reflected field

S =
N∪
j=1

Sj, usc ≈
N∑
j=1

∫∫
Sj

l(x, ξ)cj(s)ds (3)

Each term in the sum (3) may be treated as an “integral” laminate element. Though
the use of LEs as boundary elements provides higher accuracy and better stability than
approximation (2), it is more time consuming, especially in 3D, due to the necessity of
multifold integration encountered in the course of calculation of the mutual influence
between boundary elements lying on non-parallel planes. This task remains to be chal-
lenging even for contemporary powerful computers. In two-dimensional case, however,
radical reduction of the computing expenses has been achieved utilizing certain analytical
preprocessing using complex variable theory, asymptotic methods and residue technique.
Among them, the key role plays the method of rotation in the Fourier transform domain
firstly proposed for the modeling of 2D and 3D diffraction by inclined cracks [8].

5



Evgeny V. Glushkov, Natalia V. Glushkova and Artem A. Eremin

The unknown coefficients cj in representations (2) and (3) are obtained from a linear
algebraic system to which the problem is reduced in the context of collocation or Galerkin
scheme.

3 NUMERICAL EXAMPLES

Utilizing the efficient and well-developed algorithms for Green’s matrix calculation,
the method may be implemented for both isotropic and anisotropic laminates. Bench-
mark comparisons carried out with multiple-glass panes as an example have shown that
a conventional FEM approach could not catch the peculiarities of stress concentration
at contrast interlayers up to the absolute fail with too long samples [9], while the LEM
results were stable disregard to the structure length and layer properties. As a further
illustration, the results of LEM application to 2D and 3D Lamb wave propagation and
diffraction by inner and surface obstacles are presented below.

In the 2D case diffraction of the fundamental Lamb mode S0 by a surface-breaking
rectangular notch simulating corrosion damage in an isotropic aluminium plate of thick-
ness H = 3 mm has been investigated (Fig. 3, left). The dependence of the reflection
coefficient µ− = |usc, x(x1)|/|u0, x(x1)| on the notch width - waveguide thickness ratio at
a fixed frequency are shown in Fig. 3, right. The approximation (3) is used for scattered
field calculation with N = 64. Unknown functions cj are assumed to be constant within
each boundary element and Galerkin scheme is used for obtaining unknown expansion
coefficients. Good coincidence with the experimental and FEM results [10] are obtained.
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Figure 3: GW interaction with a rectangular notch. Geometry of the problem (left subplot); variation
of S0 reflection coefficient µ− with notch width when notch depth h=0.5H; frequency-thickness product
is 1.2 MHz-mm: solid line - FEM results [10], markers - experimental data [10], dashed line - LEM.

As an example of 3D diffraction problem, the incidence of plane S0 and A0 modes
on through-thickness elliptical cavities in a 5 mm-thick aluminium plate at a frequency
f=100 kHz is considered. Major and minor half axes of the ellipses are denoted by a
and b respectively. The largest dimension of the ellipse, 2a, is equal to the wavelength of
the incident mode. Results for the scattering simulation are presented in Fig. 4, where
thin solid lines stand for the data obtained using scattered field expansion in terms of
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cylindrical Bessel and Hankel function [11] and colored lines are LEM (2) results with N =
256 and collocation technique used for cj evaluation. One can see very good coincidence
of the results.
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Figure 4: Directivity of scattered waves when A0 (left subplot) or S0 (right subplot) is incident on an
elliptical through-thickness cavity in an aluminium plate at 500 kHz-mm. Thin black line - results of the
work [11], coincided colored lines - LEM

4 CONCLUSIONS

The developed analytically-based LEM technique allows one to simulate guided wave
propagation and diffraction in lengthy laminate structures with obstacles. The crucial
point of LEM implementation is fast and stable algorithms of Green’s matrix calculation
which have been developed and computer implemented both for 2D and 3D problems.
Applicability of LEM to wave diffraction problems has been validated over known inde-
pendent theoretical and experimental results.
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