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Abstract. In this work, a hysteretic shell finite element for the inelastic static and dynamic 
analysis of structures is presented. The Bouc-Wen model is utilized as a smooth hysteretic, 
rate independent model, capable of expressing the hysteretic behavior that can be easily 
extended to account for stiffness degradation, strength deterioration and pinching phenomena. 
On the basis of the classical theory of plasticity, the generalized 3D Bouc-Wen model is 
expressed in tensorial form incorporating the yield criterion and linear or nonlinear, isotropic 
or kinematic hardening law. Based on this approach, a hysteretic shell finite element is 
developed following the steps of FEM in which the shell is considered as a number of fully 
bonded layers. The classical elastic formulation of the shell element is employed following 
the Mixed Interpolation of Tensorial Components (MITC) approach in MITC9 shell element. 
This is extended by considering as additional hysteretic degrees of freedom the plastic strains 
at the Gauss points of each interface between layers, the evolution of which is determined by 
a Bouc- Wen evolution equation. The solution provides the nodal displacements, the elastic 
and plastic strains and the stresses at every Gauss point of each interface. Numerical results 
are presented that validate the proposed formulation, which are further compared against 
those obtained using Abaqus code. A good agreement is achieved between the standard FEM 
and the proposed formulation which computationally results as more efficient for the same 
accuracy.  

 
 
1 INTRODUCTION 

To avoid or relax locking phenomena in shell elements, which lead to mathematical 
instabilities, significant progress has been made on treating the mathematical inconsistencies 
and the overall error. The Mixed-Interpolated Tensorial Components - MITC elements 
constitute an efficient approach. In this work the MITC9 shell element is extended to the 
elastoplastic analysis of shell structures by incorporating the Bouc – Wen hysteresis model. 
Additional hysteretic degrees of freedom are introduced which control the plastic strains in a 
number of layers. At every Gauss point of each layer, the plastic strains are defined as 
additional hysteretic degrees of freedom, the evolution of which is described by Bouc- Wen 
evolution equations. In this way, the elastic and hysteretic stiffness matrices of shell elements 
are derived which subsequently are assembled to form the equations of motion. The evolution 
equations for the hysteretic degrees of freedom constitute an additional set of first order 
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nonlinear equations which together with the linear equations of motion describe the inelastic 
problem. The equations of motion are solved following Newmark’s scheme whereas the 
system of nonlinear evolution equations is established on the basis of a Livermore integration 
scheme. Numerical results are presented that justify the validity and accuracy of the proposed 
formulation. 

2 INELASTIC BEHAVIOR AND BOUC – WEN HYSTERETIC MODEL 

The response of most materials up to certain extend, can be considered elastic. In the 
elastic range these materials exhibit no internal damage, thus returning to zero stress – strain 
when unloaded. In stress space, the elastic domain is delimited by an external boundary i.e. 
the yield surface that is defined by a yield function of the form: 

    0 0, 0ij y ij yf        (1) 

where 0
y  is the initial yield stress, whereas any admissible stress state must satisfy the 

condition  0, 0ij y   . 

Loading further the material, plastic yielding (or plastic flow), i.e. evolution of plastic 
strains is initiated, manifested as permanent strains at unloading. This is described by the 
plastic flow rule: 

 
        
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
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  
σ

ε
σ

     (2) 

where  ijQ   is a plastic potential function and   is the plastic multiplier. For most civil 

engineering materials, excluding soils, a common valid approach is to associate the plastic 

potential with the yield function,    ij ijQ    (associated flow rule) and express eq. (2) as: 

 
   ijpl pl

ij
ij
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

  


 
 

 
σ

ε
σ

    (3) 

A complementarity condition holds, i.e. 0   , that requires that either the yield 
function is zero, or   is zero and there is no plastic flow. Together with the evolution of the 
plastic strain, an evolution of the yield stress itself is also manifested (hardening) and the 
yield surface undergoes expansion and/or translation. 

In the case of kinematic hardening, which is capable of predicting the Bauschinger effect, 
the yield function is expressed in the form: 

    0 0, 0ij y ij ij yf           (4) 

where α  is a tensorial back stress hardening parameter, that represents the evolution of the 
centre of the yield surface in the stress space. The back stress evolves as a function of the 
plastic multiplier,   and the hardening function G  as: 
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    
( ) ( )( )

ij ij
tensor notation matrix vector notationtensor components notation

or G or a G   


  α G      (5) 

In the case of Prager’s linear kinematic hardening, evolution of the back stress is defined 
by the following linear relation [6]: 

            
,pl

p p pC C G where G C   
 

  
       

    (6) 

where pC  is the hardening constant. 

In addition the total strain tensor is considered as the sum of an elastic component el
ij  and 

a plastic component pl

ij  (assumption of additive decomposition) and thus: 

 el pl el pl
ij ij ij or     ε ε ε  (7) 

Furthermore the stress increment is linearly related to the elastic strain increment in the 
plastic region and can be expressed by the following constitutive relation [2]: 

 
   

           
el pl el pl

ij ijkl kl ijkl kl kl

el pl

C C or or

C C

   

   

     

  

σ C : ε C : ε ε      

  
 (8) 

For plastic flow to occur, the stresses must remain on the yield surface (consistency 
condition) and hence: 
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 
                            

σ α
σ α

   (9) 

In order to find  , eq. (8) is pre-multiplied by the flow vector  


 
  

 and using eq. 

(9) and eq. (3): 
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                                                 

   (10) 

Relation (10) holds only when yielding has occurred. Thus, by introducing the following 
Heaviside type functions: 

      
 1 2

1, : 01, 0

0, : 00, 0

d
H H

d

              

σ σ

σ σ
 (11) 

a single relation is established for the plastic multiplier in the whole stress space, which is the 
main intervention of the Bouc – Wen model: 
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              

1
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                                                 

   (12) 

To derive the Bouc-Wen relations, the two Heaviside functions are smoothened using the 
following expressions: 

 1
0

, 2
N

H N   (13) 

and (since there is no plastic deformation during unloading and 0   ): 

 
        2

1 1
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H H sign C 

 

                                
  (14) 

Finally, using eq. (3) and eq. (12), the following Bouc – Wen model is derived: 

  
        
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
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  



 (15) 

where the interaction matrix  R  is expressed as: 

                  
1

R G C C
    

                                                        
 (16) 

and determines the necessary interrelations between the plastic strain components to secure 
that the stresses remain on the yield surface accounting also for the hardening law 
(consistency condition). In this rate form the Bouc-Wen model can incorporate any yield 
criterion and hardening law, encapsulating all different aspects of loading and unloading 
phases [9], [10]. In the case where von Mises yield criterion is utilized the expressions are: 

        
1/22 2 2 2 2 2

0

1
6 ,

2
xx yy yy zz xx zz xy yz xz yield                       

 (17) 

It is worth noting that Bouc-Wen model can be easily extended to account for stiffness 
degradation, strength deterioration and pinching phenomena [7] by introducing additional 
parameters and thus addressing a more realistic degrading behavior, which usually 
accompanies cyclic excitation. 

3 THE MITC9 SHELL ELEMENT 

Considering the shell in Figure 1, let ξ, η be two curvilinear coordinates in the middle 
plane of the shell and ζ a linear coordinate in the thickness direction. If further we assume that 
ξ, η, ζ vary between -1 and 1 on the respective faces of the element, we can write a 
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relationship between the Cartesian coordinates of any point of the shell and the curvilinear 
coordinates in the form [1]: 

        9 9

1 1

1 1
, ,

2 2

i i

i i i i
i i

i itop bottom

x x x

y N y N y

z z z

 
   

 

     
            

     
     

   (18) 

where  ,iN    are the interpolation functions. It should be noted that the coordinate 

direction ζ is only approximately normal to the middle surface. 

 

Figure 1: 9-node MITC shell element 

Relation (18) can be rewritten in a form specified by the ‘vector’ connecting the upper and 
lower points (i.e. a vector of length equal to the shell thickness ti) and the mid-surface 
coordinates: 

    
9 9

3 3
1 1

, , ,
2

i i i

i i i i i i i
i i

i i imid top bottom

x x x x

y N y N y y

z z z z

   
 

       
                 
       
       

  V V
 

 (19) 

As the strains in the direction normal to the mid-surface are assumed to be negligible, the 
displacement field throughout the element will be taken to be uniquely defined by the three 
Cartesian components of the mid-surface node displacement i and two rotations of the nodal 

vector 3iV


 about orthogonal directions normal to it. If two such orthogonal directions are 

given by vectors 1ˆ iv  and 2ˆ iv , (of unit magnitude) with corresponding (scalar) rotations αi and 

βi, we can write, dropping the suffix ‘mid’ of equation (19): 

      
9 9

2 1
1 1

ˆ ˆ, , ,
2

i
ii

i i i i i
i i i

i

u u
t

v N v N

w w


    

 

   
           
    

   

  v v  (20) 

where u, v and w are displacements in the directions of the global x, y and z axes and ti the 
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thickness of the shell at nodal point i. 

From the infinite vector directions normal to a given direction that can be generated, a 

particular scheme is followed to ensure a unique definition. If ĵ , for instance, is the unit 

vector along the y axis, 1 3
ˆ V j V

 
 makes the vector 1V


 perpendicular to the plane defined by 

the direction 3V


 and the y axis. As 2V


 has to be orthogonal to both 3V


 and 1V


, 2 3 1 V V V
  

. 

To obtain unit vectors in the three directions, 1V


, 2V


 and 3V


 are simply divided by their 

scalar lengths, giving the unit vectors 1ˆ iv , 2ˆ iv  and 3ˆ iv . On occasions the direction of the y 

axis and 3V


 may coincide, 1
ˆV i


. 

Coming to the important feature of the MITC9 shell element formulation [4], a mixed 
interpolation scheme is used so as to render the resulting element relatively distortion – 
insensitive. In the natural coordinate system of the shell element, the covariant base vectors 
are defined as: 

            
, , z

x x x
g g g   

  
  

  
 (21) 

where  x  is the vector of coordinates  T
x y z  (eq. (19)). In the natural system, the strain 

tensor is expressed in terms of covariant tensor components and contravariant base vectors as: 

 , , , ,i j
ij i j    ε g g  (22) 

where the tilde (~) indicates that the tensor components are in the convected coordinate 
system. The evaluation of these components is achieved by using the linear terms of the 
relation for the strain components in terms of the base vectors: 
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                                       



      

, , , , , ,

TT

j i
j

i

u
g g

i j



      

               
   (23) 

In the mixed interpolation, the in-layer (  ,  ,  ) and transverse shear (  ,  ) 

strain components are interpolated independently and these interpolations are tied to the usual 
displacements interpolations. The interpolation used for the evaluation of the covariant strain 
component  , ,ij     is [3]: 

      
1

, , , , ,
n

k
ij k ij

k

h         


   (24) 
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where  ,kh    are interpolation functions and  , ,k
ij     is the covariant strain component 

evaluated be eq. (23) at tying point k (Figure 2). 

  

Figure 2: Tying points used for the strain components of the MITC9 shell element. Tying points for the 
components   and   are implied by symmetry 

Finally, combining equations (22), (24) and (23), the following relation is derived: 

  
 
  

 
  

 


6 1 45 16 45
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  (25) 

The stress – strain law must contain the shell assumption that the stress normal to the shell 
surface is zero. Thus: 
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  
  
  
  

  

 (26) 

where k is the shear correction factor of 5 6  and  Q  represents a matrix that transforms the 

stress – strain law from a ξ, η, ζ Cartesian shell-alligned system to the global Cartesian 
coordinate system. 

4 STIFFNESS AND HYSTERETIC MATRICES 

The elastic deformation field is extended by introducing an additional vector of hysteretic 
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degrees of freedom which herein are the plastic strains at Gauss points of all layer interfaces 
[8]: 

               
int 1 int 2 int

1,1 1,2 1, 9,1 9,2 9,

- int 9

- int 1

, , , , , ,

T

erface erface erface n

T T T T T Tpl pl pl pl pl pl

n n

Gauss Po

Gauss Po

z      

 
  
      
  
  
  

  
  




(27) 

where  
,

pl

i j
  is the plastic component of the strain vector (eq. (27)) at the ith Gauss point of 

the jth interface. At this point, a hysteretic linear interpolation field plN    can be considered 

utilizing appropriate shape functions so that: 

  
 

 
 54 16 546 1

pl
pl

nn

N z


     (28) 

where 1n   is the total number of layers. 

 

Figure 3: A layered MITC9 shell 

The expression for the principle of virtual work in this case is written as: 

          
1 1 1

1 1 1

det
T

CJ d d dz d R   

  

    (29) 

where  d  are the virtual displacements and    are the corresponding virtual strains and by 

means of relation (8) the principle of virtual work (29) is expressed as: 

               
1 1 1

1 1 1

det
Tpl

CC J d d dz d R    

  

     (30) 

Substituting relations (27) and (28) into relation (30) the following expression is obtained: 



A. N. Moysidis, V. K. Koumousis. 

 9

 

                 

                 

1 1 1

1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

det

det det

T T

pl C

pl C

d B C B D N z J d d dz d R

B C B d J d d dz B C N z J d d dz R

 

   



  

 

     

    

   

  

     
 (31) 

and finally the following constitutive equation is obtained at the element level: 

        
 

 
  

 
   

45 45 45 54
e h e h c

n

d
k d k z k k R

z 

          
     

 (32) 

where 1n   is the total number of layers, [ ]ek  is the MITC9 elastic and [ ]hk  the herein 

introduced hysteretic stiffness matrix. The number of columns of the hysteretic matrix [ ]hk  

corresponds to six (6) components of strain at each of the nine (9) Gauss points for the n  
interfaces of the thickness of the shell. 

The additional unknown vector  z , containing all plastic strains at all Gauss points of all 

interfaces, follows an evolutionary equation of Bouc-Wen type given in relation (15) 
independently for every six component plastic strain vector at every particular Gauss point. 

From the aforementioned it becomes evident that the proposed formulation can be used 
also for other types of elements to incorporate directly the hysteretic behavior. 

5 STATE EQUATIONS - SOLUTION PROCEDURE 

The elemental stiffness and hysteretic matrices derived using eq. (32) are assembled to 

form the structural stiffness matrix  SK  and the structural hysteretic matrix  SH . Moreover, 

fn  is the number of total degrees of freedom of the structure,  int 1n   the number of layers 

into which the shell is subdivided and hysn  is the number of hysteretic degrees of freedom. It 

holds that  int54hys elemn n n   , where elemn  is the number of the shell elements of the 

structure. The equation of motion is then expressed as: 

               s s s sM U C U K U H Z P t      (33) 

where  sM ,  sC ,  sK  are the mass, viscous damping and stiffness square symmetric 

 f fn n  matrices of the structure respectively [5], while  sH  is in general the orthogonal 

global hysteretic  f hysn n  matrix of the structure and  Z  is the  1hysn   vector of hysteretic 

degrees of freedom which contains the  int54 1n   vectors  z  of all elements of the structure 

and   P t  is the  1fn   vector of external forces. All the above matrices are evaluated only 

at the beginning of the analysis requiring no updating during the subsequent analysis 
procedure and the lineal equations of motion can be solved following Newmark’s method. 
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In addition to the linear equations of motion (eq. (33)), the uncoupled non-linear evolution 
equations of the hysteretic degrees of freedom (eq. (15)) for each Gauss point at every layer 
for all the elements of structure are required. The system of first order nonlinear differential 
evolution equations can be solved using Runge – Kutta integrators or predictor-corrector 
methods, such as the Livermore family of solvers, allowing for robust and unconditionally 
stable solutions. 

Plastic flow rules are incremental in nature and standard FEM solution procedures have to 
follow small equilibrium steps to trace their path. Accuracy is needed at both the flow rule 
within an increment and keeping the solution on the yield surface. The solution is finally 
equilibrated only at the end of each increment after a number of equilibrium iterations. 
Therefore, classical elastoplastic solution procedures are based on incremental 
predictor/corrector schemes, which eventually accumulate some error. This is attributed to 
errors in the integration of the flow rule and their relation to the complete incremental / 
iterative solution procedure. A basic advantage of the proposed method is that the load is 
handled through the system of first order differential equations. The proposed formulation 
provides the nodal displacements, the elastic and plastic strains and the stresses at all Gauss 
points of every layer that satisfy the inelastic constitutive relations and equilibrium without 
any additional iterative process. Therefore, by solving in steps the system of differential 
equations that includes the evolution equations, the scheme stays always on the yield function 
and satisfies the flow rule by default and therefore the local iterations of radial return or 
backward Euler method are avoided in solving for the equilibrium of the system. 

6 NUMERICAL EXAMPLE 

A Fortran code was developed to implement and subsequently test the efficiency of the 
proposed formulation. In this example the Scordelis – Lo roof is subjected to a time varying 
load (Ricker pulse) with maximum intensity q=20kN/m2, uniformly distributed on the surface 
of the shell in –Z direction. The thickness of the roof is 0.25m, with the indicated boundary 
conditions. The roof is discretized into 9x13 9-node MITC9 shell elements and the 
computational model consists of 10 layers and 513 nodes. The material parameters are 
E=432GPa, Et=43.2GPa, ν=0.0 and σy=24MPa, where E is the Young’s modulus, Et is the 
tangent modulus, ν is the Poisson’s ratio and σy is the yield stress. The density of the material 
is 7.85 Mgr/m3 and linear kinematic hardening is considered. In addition, the material follows 
the von – Mises yield criterion. 

  

Figure 4: Geometry (L=50m, R=25m), boundary conditions and loading of Scordelis-Lo roof 
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In Figure 5 the response of the roof is plotted in terms of vertical displacement at the node 
A versus time. In the same figure the derived displacement history curve is compared against 
the one obtained using Abaqus. In Figure 6 and Figure 7 the vertical component of velocity 
and acceleration history of node A is plotted respectively. 

    

Figure 5: Vertical displacement of node A (m)       Figure 6: Vertical velocity of node A (m/sec) 

 

Figure 7: Vertical acceleration of node A (m/sec2) 

From all the previous figures and comparisons, it is apparent that the solution obtained 
based on the proposed formulation agrees well with the solution obtained using Abaqus and 
turns out as computationally advantageous for the same accuracy. 

7 CONCLUSIONS 

A hysteretic MITC9 shell finite element is developed suitable for the inelastic static and 
dynamic analysis of shell structures. A smooth rate independent hysteretic model of Bouc-
Wen type is incorporated in the constitutive relations of the standard Finite Element 
formulation yielding not only the elastic but also and hysteretic element matrices. Plastic 
strains at all shell layer interfaces are introduced as additional unknowns together with 
corresponding evolution equations. The system of governing equations is solved numerically 
following a state space formulation. 

The basic advantage of the proposed method relies on the fact that the response is handled 
through the system of first order differential equations. This provides the nodal displacements, 
the elastic and plastic strains and the stresses at all Gauss points of every layer that satisfy the 
inelastic constitutive relations and equilibrium without any additional iterative process. 
Therefore, by solving the system of differential equations numerically, the scheme stays 
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always on the yield function and satisfies the flow rule by definition. Consequently, the local 
iterations of Newton – Raphson method are avoided, at the expense of the numerical solution 
of first order evolution equations for the introduced additional hysteretic unknowns. The 
proposed formulation utilizes the inelastic constitutive relation in the principle of virtual work 
in a separable form distinguishing the elastic and hysteretic part. This results into structural 
matrices that are evaluated only once, at the beginning of the analysis procedure. The 
proposed formulation directly accounts for inelasticity in a natural way by solving in coupled 
form the linear equilibrium equations together with the non-linear evolution equations. This 
avoids the inconsiderate elastic predictions, which are belatedly followed by plastic 
corrections. For these reasons, the proposed formulation turns out computationally more 
efficient for the same accuracy as compared to standard methods especially in dynamical 
problems. 
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