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Abstract. A new theoretical approach is presented for deriving a set of equations of motion 

for a class of mechanical systems subjected to holonomic and/or nonholonomic constraints. 

The main idea is to consider the equations describing the action of the constraints as an 

integral part of the overall process leading to the equations of motion of the system. As a 

consequence of this approach, a set of coupled second order ordinary differential equations is 

derived for both the generalized coordinates and the dynamic Lagrange multipliers associated 

to the motion constraints automatically. This leads to considerable theoretical advantages, 

avoiding problems related to systems of differential-algebraic equations or penalty 

formulations. Apart from its theoretical value and elegance, this approach is expected to bring 

significant benefits in the field of numerical integration in multibody dynamics and control. 
 

 

1 INTRODUCTION 

In engineering applications, the configuration of a system is described usually by a set of 

generalized coordinates. Frequently, a minimum number of them is chosen. However, in 

many cases it is beneficial to use more coordinates than those actually needed. Then, extra 

equations are also introduced, representing the effect of motion constraints [1, 2]. These 

equations complement the set of second order ordinary differential equations (ODEs), arising 

by application of the law of motion to all components of the system. This gives rise to a set of 

differential-algebraic equations (DAEs), leading to severe difficulties during their numerical 

solution [3]. A comprehensive review on these problems can be found in [4].  

The main objective of this work is to present a new set of equations of motion for 

mechanical systems subjected to scleronomic equality constraints. The new approach is based 

on some fundamental concepts of differential geometry and treats both holonomic and 

nonholonomic constraints by considering them as part of the overall process of deriving the 

equations of motion. This leads to an assignment of inertia, damping and stiffness properties 

to the action of the constraints. As a result, the equations of motion are second order ODEs in 

both the generalized coordinates and the Lagrange multipliers. Consequently, there is no need 

to introduce artificial parameters for scaling and stabilization, as required by DAE or penalty 
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based formulations. In addition, the geometric properties of the original manifold are kept 

unchanged by the additional constraints. This preserves the geometric properties of special 

curves of the manifold employed and leads to major advantages compared to previous work in 

the field of computational Multibody Dynamics [1, 4].  

The organization of this paper is as follows. First, some useful concepts of differential 

geometry, related to dynamics of constrained mechanical systems, are briefly summarized in 

the following section. Then, two conditions on the metric and connection of two manifolds, 

describing the motion of a system with a different number of constraints, are used so that the 

form of Newton’s law of motion remains invariant [5]. This sets up the ground for a 
consistent derivation of the equations of motion, which is a task completed in Sects. 4 and 5. 

Finally, the most important conclusions are summarized in the last section. 

2 MOTION OF A DYNAMICAL SYSTEM ON A MANIFOLD 

The configuration of a mechanical system can frequently be determined by a finite number 

of generalized coordinates, 1
, ,

n

q q… . Then, the motion of the system is represented by the 

motion of a point along a curve ( )tγ γ=  on an n -dimensional manifold M , known as the 

configuration space [6]. Moreover, the tangent vector v d dtγ=  to curve γ  at a point p  

belongs to an n -dimensional vector space 
p

T M , the tangent space of the manifold. Therefore, 

if 
1

{ }
n

e e= …B  is a basis, any element u  of 
p

T M  can be expressed in the form 

1

n i i

i ii
u u e u e

=

= =∑ , 

by adopting the usual summation convention for repeated indices [7]. In addition, the rate of 

change of a vector field ( )u t  on M  along a curve with tangent vector v  is determined by the 

covariant differential of ( )u t  along v , having the form 

                                               ( ) ( )
k k i j

v i j ku t u v u e∇ = + Λɺ ,     (1) 

where ∇  represents a mathematical entity known as affine connection of the manifold, while 

( )
i id

dt
u u t=ɺ    and   ( )

i i id

dt
v q q t= =ɺ . 

The components i

j kΛ  of connection ∇  in basis B  of 
p

T M , known as affinities, are defined by 

                                            
j

i

e k j k ie e∇ = Λ .      (2) 

At every point p  of a manifold, one can also define the dual or cotangent space 
p

T M
∗ . 

Then, at any point p  and for any vector u , a covector u∗

ɶ
 may be identified and vice versa. In 

dynamics, this correspondence is commonly established through the dual product 

           ( ) , ,
p

u w u w w T M
∗

≡ 〈 〉 ∀ ∈
ɶ

,        (3) 

where ,〈⋅ ⋅〉  denotes the inner product of 
p

T M  [6]. In this way, to each basis { }
i
e  (with 

1, ,i n= … ) of 
p

T M , a dual basis { }ie
ɶ

 can be established for 
p

T M
∗  by employing the condition 

( )
i i

j je e δ=
ɶ

,         (4) 

where i

j
δ  is a Kronecker’s delta [7]. Then, the covariant differential of a covector field *( )u t

ɶ
 

on M  along a vector v  of 
p

T M  is evaluated in the form 

*
( ) ( )

j i k

v k i k ju t u v u e∇ = −Λɺ

ɶ ɶ
                                                 (5) 
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Finally, determination of the true path of motion on a manifold is based on application of 

Newton’s second law. Starting with a single particle, this law appears in the form 
* *

v
p f∇ =

ɶ ɶ

.      (6) 

The covector *
p
ɶ

 stands for the generalized momentum of the particle, while *
f
ɶ

 represents the 

resultant of the external forcing on the particle [5, 6]. Generalizing Eq. (6), the motion on a 

configuration manifold M  is governed by Newton’s law in the form 
* *

v M M
p f∇ =

ɶ ɶ

,     (7) 

where the covector * i

M i
f f e=

ɶɶ

 represents the resultant external force. Moreover, the generalized 

momentum is defined as the covector corresponding to the velocity vector, i.e., *
p v

∗

≡

ɶɶ

. Then, 

if i

i
v v e=  and * i

i
p p e=

ɶɶ

, application of the definition (3) leads to 

j

i i j
p g v= ,      (8) 

where the quantities 

,
i j i j

g e e= 〈 〉      (9) 

are components of the metric tensor at point p . These quantities can be selected to coincide 

with the elements of the mass matrix of the system, defined through the kinetic energy. 

Frequently, it is useful to think of Newton’s law (7) as a map, defined by the covectors 

   * * *

M v M M
h p f≡ ∇ −
ɶ ɶ ɶ

.     (10) 

Among them, the zero covector satisfies Newton’s law and will be called a Newton covector. 

3 APPLICATION OF NEWTON’S LAW TO CONSTRAINED SYSTEMS 

Next, assume that the motion of the system examined is subjected to an additional set of k  

holonomic and/or nonholonomic scleronomic constraints, cast in the form 

         ( ) 0A q v = ,       (11) 

where [ ]
R

i
A a=  is a k n×  matrix and v q= ɺ . When all these constraints are holonomic, the 

equation of constraints can be put in the algebraic form 

          ( ) 0qφ = .       (12) 

After imposing this additional set of constraints, the motion of the system takes place on a 

curve ( )
A
tγ  of another manifold 

A
M , with dimension m n k= − . Let { }α

θ  ( 1, ,mα = … ) be a set 

of generalized coordinates in a neighborhood of a point 
A

p , related to point p  of M  through 

a mapping defined by the constraints, which will become more explicit next. Furthermore, let 

{ }e
α

 be a basis of the tangent space 
A

p AT M  and { }e
α

ɶ
 be the corresponding basis of the dual 

space 
A

p AT M
∗ . If the constraints are linearly independent, the generalized velocities are split as 

( )
T T T

D I
v v v= , 

where 
D
v  and 

I
v θ≡ ɺ  include the dependent and independent generalized velocities, 

respectively. Then, by first partitioning the constraint matrix A , it eventually turns out that 

          v Nθ=
ɺ ,        (13) 

where N  is an n m×  matrix depending on A . This defines a linear transformation 
S

E , by 
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     i

S i
E N e e

α

α
= ⊗

i

ɶ
,     (14) 

where symbol ⊗  represents the classical tensor product [7]. It also defines the dual operator 

     i

SD i
E N e e

α

α
= ⊗

i

ɶ
.     (15) 

The lower case Latin indices vary from 1 to n . Lower case Greek indices vary from 1 to m . 

The linear mapping 
SD

E  presents a suitable vehicle for transferring the law of motion from 

M  to 
A

M . In particular, it is first required that the law governing the motion on the manifold 

A
M  preserves the form of Newton’s law expressed by Eq. (7). This means that 

* *

A
v A A
p f∇ =

ɶ ɶ

.          (16) 

In analogy to Eq. (10), one can then define a class of Newton covectors on *

A
p AT M  with form 

  * * *

A
A v A A
h p f≡ ∇ −
ɶ ɶ ɶ

.     (17) 

Then, it is required that the following condition is also satisfied 

                                         * *

A SD M
h E h=

ɶ ɶ
.      (18) 

Based on these, it was shown in a previous study [5] that if the motion on manifold M  is 

governed by Newton’s law in the form (7), this form remains the same even on the new 

manifold 
A

M , provided that the metric and the affinities on 
A

M  satisfy the conditions 

      i j

i jg N g Nαβ α β=        (19) 

and 

,

( ) 0
i j i j k m

i j ji mkg N N g N N N g v v
ρ β γ

γα ρβ α γ β α β γΛ − − Λ = ,    (20) 

where γ

αβΛ  and gαβ  are the components of the connection and metric tensor at a point of 
A

M . 

4 OPERATORS ACTING BETWEEN TANGENT AND COTANGENT SPACES 

4.1 Definition of operators acting between tangent spaces 

A key step in the process developed is that each of the k  equations of constraints is 
considered separately. Specifically, the constraints (11) are viewed as dual products 

( ) 0R R
a vψ ≡ =ɺ

ɶ
, ( 1, ,R k= … ),    (21) 

where the quantity R
a

ɶ
 represents the R -th row of matrix A  with elements R

i
a

i
 and is treated as 

a covector of 
p

T M
∗ . The last relation provides the foundation to define the linear operator 

R i

R i R
T a e e= ⊗

i

ɶ
,      (22) 

representing a mapping from 
p

T M  to a single-dimensional space 
R

R p RW T M≡ , with basis 

vector 
R
e . The underlying manifold 

R
M  and its point 

R
p  are also defined by the action of the 

R -th constraint in a way that will be clarified in Sect. 5. From hereon, an upper case Latin 

index varies from 1 to k  and does not obey the summation convention on repeated indices. 

By definition, operator 
R

T  takes vectors of 
p

T M  and returns vectors of 
R

W . In particular, 

R

R i i R
T e a e= .      (23) 

In general, the operator 
R

T  is surjective. Therefore, it possesses a null space, say 
R

H , which is 

a subspace of 
p

T M  [7]. Moreover, it accepts a right inverse, say 
R

S , which is an injective 
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linear mapping from 
R

W  to a single-dimensional subspace 
R

V  of 
p

T M , so that 

        
R R R

T S I= ,       (24) 

where 
R
I  is the identity operator in 

R
W . In addition, 

     i R

R R i
S c e e= ⊗

i

ɶ
       (25) 

and consequently 

    i

R R R i R
S e c e c= ≡ ,       (26) 

where vector 
R
c  can be selected as basis of 

R
V . Next, application of (23) and (26) yields 

R R R R
T S α α= , 

which in turn leads to 

1
i R

R i
c a = .       (27) 

Satisfaction of the last condition requires that the value of the components of vector 
R
c  are 

ˆ
i R j i

R R jc c a δ=    with   ˆ 1 ( )
R R

R i i
c a a= .      (28) 

Finally, it is an easy task to show that the operator 

       
R R R

S TΠ ≡         (29) 

is a projection. In particular, it is easy to verify that 
R R
v vΠ = , with R

R R R
v c Vα= ∈ , showing 

that space 
R

V  is the range of 
R

Π . In addition, it can be concluded from Eq. (29) that the null 

space of 
R

Π  coincides with that of 
R

T . Therefore, the space 
p

T M  can be split in the form 

    p R RT M H V= ⊕ ,       (30) 

where 
R

H  and 
R

V  are ( 1n − )- and one-dimensional vector subspaces of 
p

T M , known as the 

horizontal and vertical space of 
p

T M , respectively. Based on the projection theorem [7], this 

implies that any element v  of 
p

T M  can be decomposed uniquely in the form 

        
R R

v u v= + ,       (31) 

where 
R R

u H∈  and 
R R
v V∈ . Then, by definition 

          0R RT u = .       (32) 

The analysis performed so far can also be used to define a global decomposition of 
p

T M  in 

the presence of multiple constraints ( 2k ≥ ). To achieve this, by successively applying all the 
constraints one can eventually arrive at the following overall splitting 

      p T ST M H V= ⊕ ,       (33) 

where 
T

H  is an ( n k− )- and 
S

V  is a k -dimensional vector subspace of 
p

T M , defined by 

1

k

T R

R

H H

=

≡∩    and   
1S k

V V V≡ ⊕ ⊕⋯ ,    (34) 

respectively. In addition, one can create the k -dimensional Cartesian product space 

1 k

k times

W W W≡ × × ≅ × ×⋯ ⋯
�����
R R , 

which can be viewed as the tangent space of a k -dimensional underlying manifold 

1C k
M M M≡ × ×⋯ .     (35) 

Using the decomposition (33), an arbitrary vector of 
p

T M  can be expressed in the form 
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T S

v u v= + ,   with  
1S k

v v v= + +⋯ ,      (36) 

where 
T T

u H∈  and 
R R
v V∈  for 1, ,R k= …  (see Fig. 1). Then, the above can be used to define a 

composite transformation :
p

T T M W→  by 

1
( )

S k
Tv Tv T v v α= = + + ≡⋯ . 

 

 

Figure 1: Transformations between the tangent spaces of manifolds M , 
A

M  and 
C

M  

Likewise, another composite transformation :
S

S W V→  can also be defined by 

R R R
Se S e= ,        (37) 

so that, if 
R

α  is an element of 
R

W W⊂ , then 

( )R R R

R R R R R
S S e S e cα α α α= = = . 

This means that the image of 
R

α  through S  lies in 
R S

V V⊂  only and not in all of 
S

V . 

Next, it is easy to verify that the operator T  is characterized by the following properties 

( )
T

T Hη = ,   Im( )T W=    and   ( )T kρ = , 

representing null space, range and rank, respectively. The corresponding properties of S  are 

( ) {0}Sη = ,   Im( )
S

S V=    and   ( )S kρ = . 

In addition, a composite bijection T̂  from 
S

V  to W  results by elimination of the null space 

T
H  of T  through a proper projection. 

To complete the picture for the tangent spaces, an operator 
S

E  must also be defined as in 

Sect. 3, through Eq. (14). By construction, this operator is characterized by the properties 

   ( ) {0}
S

Eη = ,   Im( )
S T

E H=    and   ( )
S

E mρ = .   (38) 

Therefore, 
S

E  is injective, which implies that it has a left inverse [7], say ˆ
T

E , defined by 

ˆ
T S m

E E I=       (39) 

with ˆ( ) {0}
T

Eη = , ˆIm( )
A

T p AE T M=  and ˆ( )
T

E mρ = . Finally, a related operator 
T

E  can also be 

definaed, so that ( )
T S

E Vη = , Im( )
A

T p AE T M=  and ( )
T

E mρ = . Then, ˆ
T

E  can be seen as a 

bijection from 
T

H  to 
A

p AT M , resulting by elimination of the null space of 
T

E  through the 

projection from 
p

T M  to 
T

H , defined by 
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E S T
E EΠ = .       (40) 

4.2 Definition of operators acting between dual spaces 

An analogous picture is obtained for the cotangent spaces. In particular, two new 

operators, related to 
R

T  and 
R

S , are defined first according to 
R i R R i R

RD i R RD i
T a e e T e a e c= ⊗ ⇒ = ≡

i i

ɶ ɶ ɶ ɶ
   (41) 

so that the covector R
c
ɶ

 provides a basis to the single-dimensional space *

R
V  and 

i R i i R

RD R i RD R
S c e e S e c e= ⊗ ⇒ =

i i

ɶ ɶ ɶ
.    (42) 

In general, 
RD

S  is surjective. Combination of (41) and (42) leads to 

RD RD R
S T I= , 

showing that 
RD

T is the right inverse of 
RD

S . Furthermore, it can be verified that the operator 

RD RD RD
T SΠ ≡  

is a projection from *

p
T M  to *

R
V . Therefore, the dual space *

p
T M  can be split in the form 

* * *

p R RT M H V= ⊕ ,     (43) 

for each 1, ,R k= … , where *

R
H  is an ( 1n − )-dimensional subspace of 

p
T M

∗ , representing the 

null space of 
RD

Π . Based on (43), any element v∗
ɶ

 of 
p

T M
∗  can be decomposed uniquely as 

  * * *

R R
v u v= +

ɶ ɶ ɶ
,      (44) 

where * *

R R
u H∈
ɶ

 and * *

R R
v V∈
ɶ

, with 

   *
0

RD R
S u =

ɶ ɶ
.      (45) 

Successive application of 
RD

S  and 
RD

T  leads to determination of all the vector spaces *

R
H  

and *

R
V , respectively, for each constraint 1, ,R k= … . Then, under a simultaneous application of 

all the constraints, the dual space at an arbitrary point p  of manifold M  can be split as 

  * * *

p S TT M H V= ⊕ ,       (46) 

where *

S
H  is an ( n k− )-dimensional and *

T
V  is a k -dimensional subspace of 

p
T M

∗ , defined by 

* *

1

k

S R

R

H H

=

≡∩    and   * * *

1T k
V V V≡ ⊕ ⊕⋯ ,    (47) 

respectively. One can also construct the k -dimensional Cartesian product space 
* * *

1 k

k times

W W W
∗ ∗

≡ × × ≅ × ×⋯ ⋯
�����
R R . 

Based on the decomposition (46), any element of 
p

T M
∗  can be expressed in the form 

* *

S T
v u v

∗

= +

ɶ ɶ ɶ
   with   * *

1T k
v v v
∗

= + +⋯
ɶ ɶ ɶ

, 

where * *

S S
u H∈
ɶ

 and * *

R R
v V∈
ɶ

 for 1, ,R k= … . The above decomposition provides the ground to 

define composite transformations 
D

S  and 
D

T  between the dual spaces 
p

T M
∗  and *

W , as shown 

in Fig. 2. Specifically, the transformation * *
:D pS T M W→  is defined first by requiring 

* * * * *

1
( )

D D T D k
S v S v S v v α= = + + ≡⋯

ɶ ɶ ɶ ɶ ɶ
.    (48) 

Likewise, the composite transformation * *
:

D T
T W V→  is defined by 
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      R R

D RD
T e T e=

ɶ ɶ
,       (49) 

so that 
RD

T  coincides with the restriction of 
D

T  to *

R
W  and 

*
( )

R R R

D R D R R RD R
T T e T e cα α α α= = =

ɶ ɶ ɶ ɶ
, 

which shows that the image of *

R
α

ɶ
 through 

D
T  lies in * *

R T
V V⊂  only and not in all of *

T
V . 

 

 

Figure 2: Transformations between the dual spaces of manifolds M , 
A

M  and 
C

M  

Based on the above construction, the properties of 
D

S  are *( )
D S

S Hη = , *Im( )
D

S W=  and 

( )
D

S kρ = , while the corresponding properties of 
D

T  are ( ) {0}
D

Tη =

ɶ
, *

Im( )
D T

T V=  and 

( )
D

T kρ = . Moreover, by combining Eqs. (48) and (49), it can be shown that 
* *

D D
S T α α=

ɶ ɶ
,   * *

Wα∀ ∈ , 

which proves that 
D

T  is the right inverse of 
D

S . In addition, the operator 

D D D
T SΠ ≡  

represents a projection from *

p
T M  to *

T
V , with 

* *

D T
v vΠ =
ɶ ɶ

   and   * *

1

k R

T R TR
v c Vα

=

= ∈∑
ɶ ɶ

. 

Then, a new bijection ˆ
D

S  can be defined, acting from *

T
V  to *

W  and arising by eliminating the 

null space *

S
H  of 

D
S  through the projection 

D
Π . 

To complete the picture on the dual spaces, an operator 
SD

E  can be defined in exactly the 

same way as in Sect. 3, acting from 
p

T M
∗  to *

A
p AT M . In particular, 

SD
E  has the properties 

*( )
SD T

E Vη = , *
Im( )

A
SD p AE T M=  and ( )

SD
E mρ = . Moreover, since 

SD
E  is surjective, its right 

inverse 
TD

E  exists and is defined by 

      
SD TD m

E E I= ,       (50) 

with ( ) {0}
TD

Eη =

ɶ
, *
Im( )

TD S
E H= , ( )

TD
E mρ = . Then, a projection from *

p
T M  to *

S
H  results by 

ED TD SD
E EΠ ≡ . 

Finally, a companion operator ˆ
SD

E  to 
SD

E  can also be introduced, acting as a bijection from 
*

S
H  to *

A
p AT M , by eliminating the null space of 

SD
E  through the projection 

ED
Π . 
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In closing this section, consider a vector i

T i
u u e=  of the space 

T
H , defined by (47). Then, 

0
R T

T u = , 1, ,R k= … , 

which in conjunction with (23) leads to 

         0
R i

i
a u = .        (51) 

Moreover, by combining (41) and (51) it is concluded that 

      *
( ) 0

T T
v u =

ɶ
,        (52) 

which proves that the vector spaces 
T

H  and 
T

V  are orthogonal. By definition, the vectors in 

T
H  represent admissible velocities while the ideal constraint forces, say *

I C
f
ɶ

, are covectors 

produce no work under virtual displacements [8]. This means that they satisfy the condition 

        *
( ) 0

I C T
f u =

ɶ

.       (53) 

Comparison of (52) and (53) shows that the covectors in *

T
V  represent ideal constraint forces. 

5 DERIVATION OF EQUATIONS OF MOTION ON THE ORIGINAL MANIFOLD   

A central idea of the present work is based on satisfaction of the motion constraints on 

manifold M  by considering the equations of motion on 
A

M  and 
C

M  - or equivalently on 

R
M , with 1, ,R k= …  - as well. In particular, start by allowing a potential violation of the R -th 

constraint only and consider the class of Newton covectors on each of the dual spaces *

R
W  

       * * *

R R R
h p f= −ɺ

ɶ ɶ ɶ

.       (54) 

 A typical element of *

R
W  can be put in the form 

   * R R R

R R RR
e g q eα α= = ɺ

ɶ ɶ ɶ
,      (55) 

where R
q  is the coordinate of a point 

R
p  of the space 

R
M . This space can be generated by a 

mapping, determined by Eq. (23), from the unique autoparallel of M  starting at the solution 

point p  with tangent vector 
R
c , as shown in Fig. 3. Moreover, based on conditions (19) and 

(20), the metric and connection on 
R

M  are selected so that Newton’s law holds on them by 

         i j

RR R i j Rg c g c=    and   0
R

RR
Λ = .      (56) 

Therefore, taking into account (8) and (55), the first term of *

R
h
ɶ

 in (54) appears in the form 
*

( )
R R

R RR
p g q e=

i

ɺ ɺ

ɶɶ

.     (57) 

Next, by applying Eq. (42), the second term of *

R
h
ɶ

 is obtained through the transformation 
* * R

R RD M R
f S f f e= =

ɶɶ ɶ

.     (58) 

The term 
i

R R i
f c f=        (59) 

is the component of the force developed when the R -th constraint, represented by Eq. (21), 

tends to be violated. In general, ( , , )
i i
f f q q t= ɺ . Then, its value at a neighboring point ˆ

R
p  is 

ˆ ( , , )
R R

i i R R
f f q s c q s c t= + +ɺ ɺ . 

The quantitiy R
s  is the canonical coordinate along the autoparallel of M  starting at point p  

with tangent 
R
c  [7]. Then, since the values of R

s  and R
sɺ  are infinitesimal 
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ˆ ( , , ) ( , , ) ( , , )
i ij R j R

i i R Rj j

f f
f f q q t q q t c s q q t c s

q q

∂ ∂   
= + + +   

∂ ∂   
ɺ ɺ ɺ ɺ …

ɺ
   (60) 

Next, the choice R R
s q=  is made. Then, combination of equations (58)-(60) and substitution 

in (54), together with (57), yields the following expression for the Newton covectors on 
R

M  
*

[( ) ]
R R R R R

R R RR RR RR R
h h e m q c q k q f e= = + + −

i

ɺ ɺ

ɶ ɶ ɶ
.       (61) 

The new coefficients in the above expression are defined by 

RR RR
m g= ,   ( , , )

ii j

RR R Rj

f
c c q q t c

q

∂
= −

∂
ɺ

ɺ
   and   ( , , )

ii j

RR R Rj

f
k c q q t c

q

∂
= −

∂
ɺ   (62) 

and represent an equivalent mass, damping and stiffness quantity, obtained through a 

projection along the direction 
R
c , specified by the R -th constraint. 

 

Figure 3: Solution path and deviation along direction of R -th constraint on manifold M  

Now, the Newton covectors on manifolds M  and 
R

M  are related by 
* *

R RD M
h S h=

ɶ ɶ
.      (63) 

Next, multiplying both sides of (63) from the left by 
RD

T , projects these equations back to 

p
T M

∗  and more specifically to *

R
V . In particular, taking into account (41), this leads to 

* * *

R RD R RD M
v T h h= =Π
ɶ ɶ ɶ

.     (64) 

Likewise, multiplying both sides of (18) from the left by 
TD

E , projects these equations back to 

p
T M

∗  and more specifically to *

S
H  (see Fig. 2) by 

   * * *

S TD A ED M
u E h h= = Π
ɶ ɶ ɶ

.       (65) 

Combining the above and using the decomposition (46) leads to 

        * * * * *

M S T ED M TD M
h h h h h= + = Π +Π
ɶ ɶ ɶ ɶ ɶ

,      (66) 

or equivalently 

            * * *

1

k

M TD A RD RR
h E h T h

=

= +∑
ɶ ɶ ɶ

.      (67) 
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However, the equations of motion must always be satisfied on manifold 
A

M . This means that 

* *

1

k

M RD RR
h T h

=

=∑
ɶ ɶ

.     (68) 

Moreover, direct application of Eq. (41) gives 

    * ( )R R i

RD R RD R i R
T h T h e a h e= =

ɶ ɶ ɶ
.     (69) 

Finally, adopting traditional notation, the coordinates R R
qλ ≡  can be viewed as Lagrange 

multipliers, whose action is more general than that obtained in the optimization of functions 

subjected to constraints. Then, the equations of motion on manifold M  take the form 

1
( ) [( ) ]

kj m k j R R R R

i j k i m j i i RR RR RR RR
g q g q q f a m c k fλ λ λ

=

− Λ = + + + −∑
i iɺ ɺɺ ɺ ɺ .      (70) 

For each holonomic constraint, coordinate R
s  coincides with the function of constraint 

( )
R
qφ . Through the choice R R

q s= , this defines a map from M  to 
R

M  with explicit form 

    ( ) ( ( ))
R R

q t q tφ= ,        (71) 

where ( )q t  represents the coordinates of point ( )p t  on M , while R
q  is the coordinate of the 

point ( )
R

p t  mapped on 
R

M . Then, the tangent map from 
p

T M  to 
R

p RT M  is also defined by 

        ( ) ( ( ))
R R

q t q tφ= ɺɺ ,           (72) 

which specifies the corresponding velocity coordinate as well. Therefore, when the R -th 

constraint is satisfied, then taking into account (21), relations (71) and (72) yield 

( ) 0
R

q t =    and   ( ) 0
R

q t =ɺ , 

respectively, for all times. This implies immediately that 

( ) 0R
q t =ɺɺ . 

Consequently, based on Eq. (61), the class of Newton covectors on *

R
W  is represented by 

N R

R R
h f e= −

ɶ ɶ
.                (73) 

When the R -th constraint is not satisfied, consider a neighboring point ( )
R

p t  of ( )
R

p t  on 
R

M  

with coordinate ( )
R

q t . If ˆ ( )
R

q t  are the coordinates of the corresponding point ˆ ( )
R

p t  on M , 

      ˆ( ) ( ( )) ( )
R R R

R
q t q t tφ φ= ≡ ,               (74) 

while the corresponding velocity component is obtained from 

  ( ) ( )
R R

q t tφ= ɺɺ .                (75) 

Next, consider the motion of point ( )
R

p t , defining a curve ( )
R
tγ  on 

R
M . The corresponding 

point ˆ ( )
R

p t  traces a curve ˆ ( )
R
tγ  on M , lying in the vicinity of ˆ ( )

A
tγ . Finally, it is required 

that curve ( )
R
tγ  belongs to the same class of curves with ( )

R
tγ , defined by the motion of 

point ( )
R

p t , so that it leads to the same Newton covector, given by Eq. (73). Consequently, by 

substituting Eqs. (74) and (75) into (61) and by employing (73), a scalar equation with form 

        ( ) 0R R R

RR RR RR
m c kφ φ φ+ + =

iɺ ɺ               (76) 

is obtained for each holonomic constraint, which forces both Rφɺ  and Rφ  to become zero. 

When the constraint is nonholonomic, only the following tangent mapping is available 

( ) ( ( ), ( ))
R R

q t q t q tψ= ɺɺ ɺ . 

Here, exact satisfaction of the R -th constraint implies that 0
R

ψ =ɺ  for all times. This means 

that 0
R

ψ =ɺɺ , while the corresponding class of Newton covectors on *

R
W  is now represented by 
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  ( )
N R R

R RR R
h k q f e= −

ɶ ɶ
,          (77) 

instead of (73). Moreover, the perturbation term in the velocity component can be chosen by  

ˆ ˆ( ) ( ( ), ( )) ( )
R R R

R R
q t q t q t tψ ψ= ≡

ɺɺ ɺ ɺ . 

Consequently, employing Eq. (61) in conjunction with (77) leads to a scalar equation 

( ) 0R R

RR RR
m cψ ψ+ =

i

ɺ ɺ ,       (78) 

which can force only R
ψɺ  to become zero. 

Conditions (76) and (78) furnish a set of k  second order ODEs, since 
RR

m  is always 

positive. These equations together with (70) provide a set of n k+  second order ODEs in the 

n k+  unknowns i
q  and R

λ  and must be accompanied by a set of initial conditions. Note that 

conditions (76) and (78) have a similarity to but are more general than those employed in the 

so-called Baumgarte stabilization [1, 4]. Here these equations were derived as part of the 

systematic approach developed and were not introduced artificially. Also, all the coefficients 

of these equations were determined analytically and not through an adhoc selection. 

6 SYNOPSIS 

A set of equations of motion for mechanical systems subjected to scleronomic motion 

constraints was derived. Both holonomic and nonholonomic equality constraints were treated 

concurrently. The underlying idea was to incorporate the constraints one by one, in a process 

analogous to that used for setting up the equations of motion, which was equivalent to 

assigning appropriate inertia and possibly damping and stiffness properties to each constraint 

equation. This led to a system of second order ODEs for both the generalized coordinates and 

the Lagrange multipliers, which eliminated the singularities associated with sets of DAEs and 

the need for an arbitrary selection of terms and parameters required by penalty formulations. 

Apart from its theoretical elegance, this is expected to have a significant impact in developing 

efficient methods for the numerical integration of these equations, since no stabilization or 

scaling is required. In addition, the equations derived include terms activating a mechanism 

for performing constraint recovery in an automatic manner. Finally, the set of equations 

obtained can also be extended to systems with rheonomic or unilateral constraints. 
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