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Abstract. Direct simulations of the incompressible Navier-Stokes equations at high
Reynolds numbers are not feasible because the convective term produces far too many
relevant scales of motion. Therefore, in the foreseeable future, numerical simulations of
turbulent flows will have to resort to models of the small scales. Large-eddy simulation
(LES) and regularizations of the non-linear convective term are examples thereof. In
the present work, we propose a natural blending between both approaches: restoring the
Galilean invariance of the regularization method leads to an additional hyper-viscosity
term that can be viewed as a LES model. Technical details such as the determination
of the filter length and the balancing between regularization and LES are analyzed and
discussed. Finally, the performance of the method is assessed through application to the
Burgers’ equation and a homogeneous isotropic turbulence.

1 INTRODUCTION

The incompressible Navier-Stokes (NS) equations form an excellent mathematical model
for turbulent flows. In primitive variables they read

∂tu+ C(u,u) = Du−∇p ; ∇ · u = 0, (1)

where u denotes the velocity field, p represents the pressure, the non-linear convective
term is defined by C(u,v) = (u · ∇)v and the diffusive term reads Du = ν∆u, where ν
is the kinematic viscosity. Since direct numerical simulations (DNS) of turbulent flows
cannot be computed at high Reynolds numbers, a dynamically less complex mathematical
formulation is needed. The most popular example thereof is the Large-Eddy Simulation
(LES). Alternatively, regularizations of the non-linear convective term basically reduce the
transport towards the small scales: the convective term in the NS equations, C, is replaced
by a smoother approximation [1, 2, 3]. In our previous works (see [4] and references
therein), we restricted ourselves to the C4 approximation [3]: the convective term in the
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NS equations (1) is replaced by the following O(ǫ4)-accurate smoother approximation

C4(u,v) = C(u,v) + C(u,v′) + C(u′,v), (2)

where the prime indicates the residual of the filter, e.g. u′ = u−u, which can be explicitly
evaluated, and (·) represents a symmetric linear filter with filter length ǫ. However, two
main drawbacks were observed: (i) due to the energy conservation, the model solution
tends to display an additional hump in the tail of the spectrum (see Figures 2 and 3 in
Section 4) and (ii) for very coarse meshes the damping factor can eventually take very
small values.

In this context, we propose to combine regularization and LES modeling. The linkage
follows from (approximately) restoring the Galilean invariance for the regularization by
means of a modification of the diffusive term. For details the reader is referred to [5].
Shortly, by imposing all the symmetries and conservation properties of the original con-
vective operator, C(u,u), and canceling the second-order terms leads to the following
one-parameter fourth-order regularization

∂tuǫ + Cγ
4 (uǫ,uǫ) = Dγ

4uǫ −∇pǫ ; ∇ · uǫ = 0, (3)

where the convective and the diffusive terms are modified in the same vein

Cγ
4 (u,v) =

1

2
((C4 + C6) + γ(C4 − C6))(u,v) and Dγ

4u = Du+ γ̃(Du′)′, (4)

where γ̃ = 1/2(1 + γ) and C6(u,v) = C(u,v) + C(u,v′) + C(u′,v) + C(u′,v′) . Notice
that in this case the dissipation is reinforced by means of an hyper-viscosity term. As
expected, this basically acts at the tail of the energy spectrum; therefore, it helps to
mitigate the two above-mentioned drawbacks. From a LES point-of-view, we can relate
the CDγ

4 regularization to a closure models for any invertible filter. Then, to apply the
method two parameters still need to be determined; namely, the local filter length, ǫ,
and the constant γ̃. The former follows from the criterion that the vortex-stretching
mechanism must stop at the smallest grid scale. The latter is approximately bounded
by assuming that the smallest grid scale lies within the inertial range for a classical
Kolmogorov energy spectrum. These issues are addressed in Sections 2 and 3, respectively.
Then, the performance of the method is assessed through application to the Burgers’
equation and a homogeneous isotropic turbulence in Section 4. Finally, relevant results
are summarized and conclusions are given.

2 STOPPING THE VORTEX-STRETCHING MECHANISM

2.1 Interscale interactions

To study the interscale interactions in more detail, we continue in the spectral space.
The spectral representation of the convective term in the NS equations is given by

C(u,u)k = iΠ(k)
∑

p+q=k

ûpqûq, (5)
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where Π(k) = I − kkT/|k|2 denotes the projector onto divergence-free velocity fields in
the spectral space. Taking the Fourier transform of Eqs.(3), we obtain the evolution of
each Fourier-mode ûk(t) of uǫ(t) for the {CD}γ4 approximation

(
d

dt
+ hγ

4(Ĝk)ν|k|2
)
ûk + iΠ(k)

∑

p+q=k

f γ
4 (Ĝk, Ĝp, Ĝq)ûpqûq = Fk, (6)

where Ĝk denotes the k-th Fourier-mode of the kernel of the convolution filter, i.e.,
ûk = Ĝkûk. Notice that hereafter, for simplicity, the subindex ǫ is dropped. The mode
ûk interacts only with those modes whose wavevectors p and q form a triangle with the
vector k. Thus, compared with Eq.(5), every triad interaction is multiplied by

f γ
4 (Ĝk, Ĝp, Ĝq) = 1/2 {(1 + γ)f4 + (1− γ)f6} (Ĝk, Ĝp, Ĝq), (7)

where the f4 and f6 are given by

f4(Ĝk, Ĝp, Ĝq) = ĜkĜp + ĜkĜq + ĜpĜq − 2ĜkĜpĜq, (8)

f6(Ĝk, Ĝp, Ĝq) = 1− (1− Ĝk)(1− Ĝp)(1− Ĝq), (9)

where 0 < fn ≤ 1 (n = 4, 6). On the other hand, the k-th Fourier mode of the diffusive
term is multiplied by

hγ
4(Ĝk) = 1 + 1/2(1 + γ)(1− Ĝk)

2 (10)

where hγ
4 ≥ 1. Moreover, since for a generic symmetric convolution filter (see [6], for

instance), Ĝk = 1 − α2|k|2 + O(α4) with α2 = ǫ2/24, the functions f γ
4 and hγ

4 can be
approximated by f γ

4 ≈ 1 − 1/2(1 + γ)α4(|k|2|p|2 + |k|2|q|2 + |p|2|q|2) and hγ
4 ≈ 1 +

1/2(1 + γ)α4|k|4, respectively. Therefore, the interactions between large scales of motion
(ǫ|k| < 1) approximate the NS dynamics up to O(ǫ4).

2.2 Finding a criterion for f γ
4

On the other hand, taking the curl of Eq.(3) leads to

∂tω + Cγ
4 (u,ω) = Cγ

4 (ω,u) +Dγ
4ω. (11)

This equation resembles the vorticity equation that results from the NS equations: the
only difference is that C and D are replaced by their regularizations Cγ

4 and Dγ
4 , respec-

tively. If it happens that the vortex stretching term, Cγ
4 (ω,u), in Eq.(11) is so strong

that the dissipative term, Dγ
4ω, cannot prevent the intensification of vorticity, smaller

vortical structures are produced. Left-multiplying the vorticity transport Eq.(11) by ω,
we can obtain the evolution of |ω|2. In this way, the vortex-stretching and dissipation
term contributions to ∂t|ω|2 result

ω · Cγ
4 (ω,u) and ω · Dγ

4ω, (12)
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respectively. In order to prevent local intensification of vorticity, dissipation must domi-
nate the vortex-stretching term contribution at the smallest grid scale, |kc| =

√
3π/h. In

spectral space, this requirement leads to the following inequality

1

2

(
ω̂kc

· Cγ
4 (ω,u)

∗

kc
+ Cγ

4 (ω,u)kc
· ω̂∗

kc

)

ω̂kc
· ω̂∗

kc

≤ hγ
4(Ĝkc

)νk2
c , (13)

where the vortex-stretching term, Cγ
4 (ω,u)kc

, is given by

Cγ
4 (ω,u)kc

=
∑

p+q=kc

f γ
4

(
Ĝkc

, Ĝp, Ĝq

)
ω̂piqûq. (14)

Note that f γ
4 (Ĝkc

, Ĝp, Ĝq) depends on the filter length ǫ and, in general, on the wavevec-
tors p and q = kc−p. This makes very difficult to control the damping effect because f γ

4

cannot be taken out of the summation in (14). To avoid this, filters should be constructed
from the requirement that the damping effect of all the triadic interactions at the smallest
scale must be virtually independent of the interacting pairs, i.e.

f γ
4 (Ĝkc

, Ĝp, Ĝq) ≈ f γ
4 (Ĝkc

). (15)

This is a crucial property to control the subtle balance between convection and diffusion
in order to stop the vortex-stretching mechanism. This point was addressed in detail
in [7]. Then, the overall damping effect at the smallest grid scale, H4(Ĝkc

), follows
straightforwardly

H4(Ĝkc
) =

f γ
4 (Ĝkc

)

hγ
4(Ĝkc

)
=

2νk2
cω̂kc

· ω̂∗

kc

ω̂kc
· C(ω,u)∗kc

+ C(ω,u)kc
· ω̂∗

kc

, (16)

with the condition that 0 < H4(Ĝkc
) ≤ 1. Notice that hγ

4(Ĝkc
) = 2− f γ

4 (Ĝkc
); therefore,

the damping function f γ
4 (Ĝkc

) reads

f γ
4 (Ĝkc

) =
2H4(Ĝkc

)

1 +H4(Ĝkc
)
. (17)

2.3 Practical re-definition of f γ
4

In Eq.(7), the f γ
4 was defined as

f γ
4 (Ĝk, Ĝp, Ĝq) = 1/2 {(1 + γ)f4 + (1− γ)f6} (Ĝk, Ĝp, Ĝq), (18)

however, in general, this expression is not very practical because it implies (i) the cal-
culation of f6 given in Eq.(9) and (ii) the re-construction of discrete linear filters that
fulfill the property given in Eq.(15). The latter is especially difficult since those filters
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should also be γ-dependent. Alternatively, we propose to re-use the discrete linear filters
proposed in [7] for the f4 damping function. Hence, Eq.(18) needs to be simplified to be
expressed in terms of f4. Two options have been analyzed. Namely,

f γ,1
4 (Ĝk, Ĝp, Ĝq) = 1/2 {(1 + γ)f4 + (1− γ) } (Ĝk, Ĝp, Ĝq) = γ̃f4(Ĝk, Ĝp, Ĝq) + (1− γ̃),

(19)

f γ,2
4 (Ĝk, Ĝp, Ĝq) = 1/2 {(1 + γ)f4 + (1− γ)f4} (Ĝk, Ĝp, Ĝq) = f4(Ĝk, Ĝp, Ĝq), (20)

where γ̃ = 1/2(1 + γ). The former assumes that f4 ≈ f6 whereas the latter assumes
f6 ≈ 1. At the smallest grid scale, kc, and assuming that the equality Eq.(15) is satisfied
they result

f γ,1
4 (Ĝkc

, Ĝkc
, 1) = γ̃(2Ĝkc

− Ĝ2
kc
) + (1− γ̃), (21)

f γ,2
4 (Ĝkc

, Ĝkc
, 1) = (2Ĝkc

− Ĝ2
kc
). (22)

Then, recalling that hγ
4 is given by hγ

4(Ĝk) = 1 + 1/2(1 + γ)(1 − Ĝk)
2 (see Eq. 10), the

relation between hγ
4(Ĝkc

) and f γ
4 (Ĝkc

) reads

hγ,1
4 (Ĝkc

) = 2(1 + γ̃)− f γ,1
4 (Ĝkc

), (23)

hγ,2
4 (Ĝkc

) = 1 + γ̃(1− f γ,2
4 (Ĝkc

)), (24)

and f γ,1
4 (Ĝkc

) and f γ,2
4 (Ĝkc

) in terms of H4(Ĝkc
) follow

f γ,1
4 (Ĝkc

) =
2(1 + γ̃)H4(Ĝkc

)

1 +H4(Ĝkc
)

, f γ,2
4 (Ĝkc

) =
(1 + γ̃)H4(Ĝkc

)

1 + γ̃H4(Ĝkc
)
. (25)

Finally, from a practical point-of-view it is more appropriate to find the relations of
f4(Ĝkc

) in terms of H4(Ĝkc
)

f4(Ĝkc
) =

f γ,1
4 (Ĝkc

)− (1− γ̃)

γ̃
=

(1 + γ̃)H4(Ĝkc
)− (1− γ̃)

γ̃(1 +H4(Ĝkc
))

, (26)

f4(Ĝkc
) = f γ,2

4 (Ĝkc
) =

(1 + γ̃)H4(Ĝkc
)

1 + γ̃H4(Ĝkc
)
, (27)

where f4(Ĝkc
) ≈ (2Ĝkc

− Ĝ2
kc
). The first approach relies on the assumption that f6 ≈ 1.

For a wide range of frequencies this is probably a reasonable approximation since f6 ≈
1−α6|k|2|p|2|q|2 whereas f4 ≈ 1−α4(|k|2|p|2+|k|2|q|2+|p|2|q|2). However, the foregoing
analysis is localized at the smallest grid scale, kc, where this assumption is not correct.
On the other hand, the second approach assumes the f6 ≈ f4. In Figure 1, the dependence
of f4(Ĝkc

) respect to H4(Ĝkc
) is displayed. Only the second approach, f6(Ĝkc

) ≈ f4(Ĝkc
),

shows an appropriate behavior: (i) 0 ≤ f4(Ĝkc
) ≤ 1 irrespectively of the value of γ̃ and
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H4(Ĝkc
) (ii) and f4(Ĝkc

) = 0 for H4(Ĝkc
) = 0 and f4(Ĝkc

) = 1 for H4(Ĝkc
) = 1 for any

value of γ̃. Notice that for γ̃ < 1 and H4(Ĝkc
) < (1 − γ̃)/(γ̃ + 1), the expression (26)

leads to negative values of f4(Ĝkc
). An example thereof is given in Figure 1 (top, left)

where γ̃ = 0.5 and f4(Ĝkc
) < 0 for H4(Ĝkc

) < 1/3. For all the above-mentioned reasons

we adopt the second approach, i.e. f6(Ĝkc
) ≈ f4(Ĝkc

); therefore, the relation between

f4(Ĝkc
) and H4(Ĝkc

) is given by Eq.(27) whereas hγ
4(Ĝkc

) is given by Eq.(24).

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

f4
(Ĝ
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Figure 1: Dependence of f4(Ĝkc
) respect to H4(Ĝkc

) for both approaches (f6(Ĝkc
) ≈ 1 and f6(Ĝkc

) ≈
f4(Ĝkc

) and for different values of γ̃.

3 ON THE DETERMINATION OF γ

A criterion to determine the local filter length, ǫ, has been presented in the previous
section. Then, the only parameter that still needs to be determined in Eq.(3) is the
constant γ. At this point, the ’optimal’ value of γ could be determined by means of a
trial-and-error numerical procedure. Alternatively, the constant γ can be obtained by
assuming that the smallest grid scale kc = |kc| =

√
3π/h lies within the inertial range

for a classical Kolmogorov energy spectrum E(k) = CKε
2/3k−5/3. In such a case, and
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recalling that Ĝk = 1 − α2|k|2 + O(α4), the total dissipation for kT ≤ k ≤ kc can be
approximated by the contribution of the following two terms

Dν ≡ ν

∫ kc

kT

k2E(k)dk D′′

ν ≡ ν

∫ kc

kT

k4α4E(k)dk, (28)

where Dν is the physical viscous dissipation and D′′

ν is the additional dissipation intro-
duced by the hyper-viscosity term, (Du′)′. Hence, integration for a Kolmogorov energy
spectrum, the total dissipation within the range kT ≤ k ≤ kc is given by

Dν + γ̃D′′

ν =
3ν

16
CKε

2/3
{(

4 + γ̃α4k4
c

)
k4/3
c −

(
4 + γ̃α4k4

T

)
k
4/3
T

}
, (29)

where γ̃ = 1/2(1 + γ) has been introduced here for the sake of simplicity. At the tail of
the spectrum the following

H̃4 ≈
Dν + γ̃D′′

ν

ε
, (30)

represents the ratio between the total dissipation and the energy transferred from scales
larger than kT to the tail of the spectrum. Let us assume that H̃4 = O(H4(Ĝkc

)) where

the overall damping at the smallest grid scale, H4(Ĝkc
), is given by Eq.(16). In order to

apply the method in a physical domain in R
3, the following (equivalent) bounding was

proposed in [4]

H4(Ĝkc
) = min {λ∆νQ/|R|, 1} , (31)

where R = −1/3tr(S3) = −det(S) = −λ1λ2λ3 and Q = −1/2tr(S2) = −1/2(λ2
1+λ2

2+λ2
3)

are the invariants of S = 1/2(∇u + ∇uT ), respectively, and λ1 ≤ λ2 ≤ λ3 are the
eigenvalues of S. λ∆ < 0 is the largest (smallest in absolute value) non-zero eigenvalue
of the Laplacian operator ∆ on an arbitrary part of the flow domain Ω with periodic
boundary conditions. If we consider that the domain Ω is a box of volume h, then
λ∆ = −(π/h)2. In a numerical simulation h would be related with the local grid size.

However, at this point it is more suitable to express it in terms of the invariant Q.
To do so, we simply notice that the three eigenvalues of S can be computed analytically,
i.e. λi = −|S|

√
1/3 cos(θ/3 − 2π(i − 1)/3), i = 1, 2, 3, where |S| =

√−4Q and the
angle θ is given by θ = arccos{1/2R/(−1

3
Q)3/2}. Since S is symmetric, the eigenvalues

must be real-valued, λi ∈ R; therefore, the invariants Q and R satisfy 27R2 + 4Q3 ≤ 0.
Hence, θ ∈ [0, π] and the ratio |R|/−Q can be bounded in terms of the invariant Q,
i.e. 0 ≤ |R|/−Q ≤

√
−4Q/27. Then, plugging this into Eq.(31) leads to

1 ≥ H4(Ĝπ) ≥ −
√

27

4

λ∆ν√
−Q

. (32)

On the other hand, for a classical Kolmogorov energy spectrum, the ensemble averaged
invariant Q is approximately given by

< Q >= −1

4

∫ kc

0

k2E(k)dk ≈ − 3

16
CKε

2/3k4/3
c . (33)
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Finally, combining Eqs.(32) and (33), the energy balance given by Eq.(30) results

−12λ∆νε√
CKε2/3k

4/3
c

. Dν + γ̃D′′

ν . (34)

Then, plugging Eq.(29) and recalling that λ∆ = −3(π/h)2, kc =
√
3π/h and α ≈ k−1

c , the
previous expression simplifies

1 .
C

3/2
K

32

{
(4 + γ̃)−

(
4 + γ̃

(
kT
kc

)4
)(

kT
kc

)4/3
}
. (35)

Since kc > kT we can consider that 4 ≫ γ̃(kT/kc)
4 to obtain a proper bound for γ̃,

γ̃ & 4

{
8C

−3/2
K −

(
1−

(
kT
kc

)4/3
)}

≈ 4
(
8C

−3/2
K − 1

)
. (36)

Hence, for a Kolmogorov constant of CK ≈ 1.58 [8] it leads to γ̃ & 12.1 ( γ & 23.2). To
confirm whether this is a proper estimation of γ̃ numerical experiments are required.

4 NUMERICAL EXPERIMENTS

The {CD}γ4-regularization has been proposed in the previous sections. In short, the
original NS equations (1) are replaced by the smoother approximation given in Eqs.(3)
where Cγ

4 (uǫ,uǫ) and Dγ
4uǫ are given by Eqs.(4). Then, the criteria to determine the

damping factor of the discrete linear filter at the smallest grid scale are respectively given
by Eq.(16) (spectral space) and Eq.(31) (physical space). Regarding the implementation
of Cγ

4 (uǫ,uǫ), we follow the approach proposed in Section 2.3; therefore, the damping

function at the smallest grid scale, f γ
4 (Ĝkc

), with the overall damping, H4(Ĝkc
), is given

by Eq.(27) whereas hγ
4(Ĝk) is still given by Eq.(10). Finally, the value of γ̃ has been

approximately bounded by Eq.(36). In this section several numerical experiments are
carried out to assess the performance of the proposed method.

4.1 Burgers’ equation

The numerical simulation of the 1D Burgers’ equation

∂tu+ C(u, u) = 1

Re
∂2
xxu+ f, (37)

on an interval x ∈ (0, 2π) with periodic boundary conditions has been chosen as a first
test-case to assess the performance of the proposed {CD}γ4-regularization method. Despite
its simplicity, important aspects of the 3D NS equations remain (see [9], for instance).
Note that now the convective term is given by C(u, u) = u∂xu. In Fourier space, it reads

∂tûk +
∑

p+q=k

ûpiqûq = − k2

Re
ûk + Fk, (38)
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Figure 2: Left: energy spectra of the steady-state solution of the Burgers’ equation at Re = 100 with
and without modeling, for kc = 30. Direct comparison with the DNS reference solution (solid line) with
kc = 300. Right: zoom of the tail of the spectra for different values of γ̃ from 0 to 100.

where ûk denotes the k-th Fourier mode of u(x, t) ∈ R. The initial conditions are set to
ûk = k−1 whereas the forcing term vanishes Fk = 0 for k > 1 and F1 forces ∂tû1 = 0. For
details about the spectral numerical algorithm and the discrete linear filters the reader
is referred to [7]. Results obtained with and without regularization for kc = 30 are
displayed in Figure 2 and compared with the DNS reference solution (solid line) obtained
with kc = 300. Clearly, the direct simulation without model with kc = 30 is not able to
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capture the physics. At high wavenumbers, the energy is not dissipated enough; therefore,
it is reflected back towards the larger scales. The zoom in Figure 2 (left) shows that
the direct simulation with kc = 30 is substantially different from the DNS even for low
wavenumbers. Regarding the effect of γ̃, different values have been tested. As expected,
the C4 solution, that corresponds to γ̃ = 0, displays a hump at the tail of the spectrum.
This effect was already observed in [7]. Figure 2 (right) shows how this undesirable effect
tends to attenuate for increasing values of γ̃. Even more important, it seems to reach an
asymptotic solution for γ̃ & 100. This is in a fairly good agreement with the estimation
given by Eq.(36). Notice that for the Burgers’ equation CK ≈ 0.452; therefore, it leads
to γ̃ & 101.3. Similar results have been obtained at higher Re.

4.2 Forced homogeneous isotropic turbulence

The simulation of forced homogeneous isotropic turbulence has been chosen as the
second test-case. The code is pseudo-spectral and uses the 3/2 dealiasing rule. Filters
proposed in [7] are applied in spectral space. The total amount of energy in the first two
modes is kept constant following the approach proposed in [10]. Figure 3 (left) displays
the results at Reλ ≈ 72 for a box size of 163 for different values of γ̃ from 0 up to 30.
As expected, the original hump displayed for γ̃ = 0 attenuates for increasing values of γ̃.
Moreover, the lower bound for γ̃ given by Eq.(36) is in a fairly good agreement with these
numerical tests. Even more important, for γ̃ bigger than a certain value, the results are
virtually independent on the value of γ̃.

Figure 3 (right) displays the results obtained for a box size of 643 and Reλ ≈ 202. In
this case, the energy-containing and dissipative scales are clearly separated by an inertial
range. Again, the hump at the tail of the spectrum attenuates for increasing values of γ̃.
More importantly, the inertial range is well predicted only for those cases with γ̃ & 14, in
relatively good agreement with the lower bound given by Eq.(36).

5 CONCLUDING REMARKS AND FUTURE RESEARCH

Despite the rapidly growing computing power and the availability of efficient parallel
algorithms, in the foreseeable future, numerical simulations of turbulent flows will have
to resort to models of the small scales for which numerical resolution is not available.
The most popular example thereof is the Large-Eddy Simulation (LES). Alternatively,
regularizations of the non-linear convective term basically reduce the transport towards
the small scales: the convective term in the Navier-Stokes (NS) equations is replaced by a
smoother approximation. In the present work, we have proposed the {CD}γ4-regularization
of the NS equations: the convective and diffusive operators in the NS equations (1) are
replaced by the O(ǫ4)-accurate smooth approximation given by Eq.(4). This linkage
follows from (approximately) restoring the Galilean invariance for the regularization by
means of a modification of the diffusive term. Then, the only additional ingredient is
a self-adjoint linear filter whose local filter length is determined from the requirement
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Figure 3: Energy spectra at Reλ ≈ 72 (left) and Reλ ≈ 202 (right) for different values of γ̃ from 0 up
to 30.

that vortex-stretching must be stopped at the scale set by the grid via Eq.(16) provided
that discrete filter satisfies Eq.(15). Regarding the parameter γ of Eq.(3), it has been
approximately bounded by assuming a Kolmogorov energy spectrum. In this way, the
following bound has been determined:

γ̃ & 4
(
8C

−3/2
K − 1

)
, (39)
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where γ̃ = 1/2(1 + γ) and CK is the Kolmogorov constant. The performance of the
method has been successfully assessed through application to the Burgers’ equation and
a homogeneous isotropic turbulence.
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