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Abstract. In this paper, we present an algorithm for frictionless contact problems of linear 

elastic bodies with multi-point constraints. Our method is based on interior point method and 

is developed for large scale stress analysis of electronic device models. These models consist 

of dozens of parts and contain so many contact constraints and multi-point constraints that 

make convergence of contact states difficult to achieve. We implemented our algorithm into 

FrontISTR, which is open-source and large scale finite element structural analysis software, 

and investigated its performance for a model of laptop PC. 
 

 

1 INTRODUCTION 

In a design process of portable electronic devices such as laptop PCs or mobile phones, it 

is important to satisfy both of lightness and toughness of the whole body. Recently, the design 

process has become more difficult than ever, mainly because of two following reasons. The 

first reason is that components of portable electronic devices such as liquid crystal display and 

printed circuit board have become thin and small. Therefore, each component does not have 

sufficient stiffness. The second reason is increase of portability. Portable electronic devices   

encounter various kinds of external loads, for example pressure in bag or drop impact. Today, 

structural analysis based on finite element method is widely used in order to improve the 

design quality and reduce the cost of experimental production. Recent finite element models 

are usually built by assembled parts to evaluate the stiffness of the whole body. This kind of 

problems are formulated as static stress analysis with contact constraints and multi-point 

constraints between various parts. 

It should be noted that electronic devices consist of many thin parts such as liquid crystal 

display, printed circuit board and covers, and other parts are arranged between them. Contacts 

occur everywhere inside electronic devices when external loads are applied to them. Thus, the 

finite element models have not only large number of degrees of freedom (DOFs) but also 

large number of contact constraints.  

Major algorithms to solve this kind of contact problems are introduced in Wriggers[1]. As 
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the major algorithm, active set method is well known as a simple and widely used method. In 

this method, a candidate contact node is called active when it is in contact and active set is the 

set of all active candidate contact nodes. Active set is given from an initial configuration of 

model and then iterative update of active set is done until the complementary conditions 

between the gap and contact force converge. In each iteration, trial deformation analysis in 

which current active contact nodes are constrained is done and then active set is updated by 

the results. It is also called as trial-and-error method. Applying active set method to structural 

analysis of electronic devices leads to large number of iteration to determine the contact state. 

Since a matrix solver routine is called once or more times per iteration in computation, 

increase of the number of iteration directly affects the total computational time. 

We focus on interior point methods [2] as an efficient strategy for this kind of problems. 

Interior point methods are said to be efficient algorithms to solve convex nonlinear problems 

with the large number of constraints. Christensen et al.[3] applied primal-dual interior point 

method to linear elastic contact problem with friction. They also compared interior point 

method with semismooth Newton method, which is a direct expansion of Newton method to 

non-differencial functions, and concluded that semismooth Newton method is faster and 

robust. However, their models have quite small dofs and they also indicated that interior point 

method might need less iterations than semismooth Newton method for problems with a huge 

number of potential contact nodes. Tanoh et al.[4] also applied primal and primal-dual interior 

point method, and showed that interior point methods are efficient for large scale problems. 

Miyamura et al.[5] proposed the combination of active set method and primal interior point 

method and showed that their algorithm are faster than simple application of interior point 

methods in some examples. 

In this paper, we propose an interior point method based algorithm to solve the contact 

problem that contains many contact constraints and multi-point constraints. In our method, 

multi-point constraints are removed by quadratic penalty method and then primal-dual interior 

point method is applied to the problem. Furthermore, we implement our algorithm into 

FrontISTR[6], which is open-source and large scale finite element structural analysis software, 

and investigate its performance by using laptop PC model. 

This paper is organized as follows: Formulation of contact problem is briefly explained in 

section 2. In section 3, primal-dual algorithm for contact problem given by Tanoh et al.[4] is 

introduced and our algorithm is proposed. Numerical results are given in section4, and 

conclusion is presented in section 5. 

 

2 FORMULATION OF CONTACT PROBLEM 

In this paper, we consider three-dimensional, small deformation and frictionless contact 

problem of elastic bodies that are discretized by finite element method. We use node-to-

segment discretization for contact model. It is because mesh of contact surfaces is non-

conforming since the mesh is generated in a part-by-part manner for electronic device models. 

Let   denote the number of nodes and    denote the number of contact candidate nodes. 

The nodal displacement vector, external load vector and stiffness matrix are represented by 

     ,       and         , respectively. Let    (          ) denote the contact 

force for i-th contact constraint. The equibrium equations are given by 
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     ∑   

  

   

    (1) 

where        is the vectors that transform contact force      to that of global coordinate. For 

the node-to-segment contact model, the components of     is calculated from the normal 

vector and the shape function at a projection point of a slave node to a master segment. A 

slave node and a master segment are illustrated in fig. 1. 

 

 
Figure 1: slave node and master segment. 

 

Furthermore, Let    (          ) denote initial gap of i-th contact constraint, then the gap 

at current configulation can be represented by   
     . For the gap and contact force, the 

following conditions must be satisfied: 

  (  
     )    (          )  (2) 

      (          ), (3) 

  
        (          )  (4) 

A contact candidate node is said to be “free” when the gap is positve and the contact force 

is zero, and is said to be “in contact” when its gap is zero and contact force is positive. 

Equations (2), (3) and (4) represent that the state of each contact constraint is either free or in 

contact. 

We also point out that eqs.(1), (2), (3) and (4) are the Karush Kuhn Tucker (KKT) 

condition of the minimization problem of the following objective function under the 

constraint if eq.(4): 

 ( )  
 

 
          (5) 

Thus, it is possible to apply various optimization methods to contact problems. 
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3 INTERIOR POINT METHODS FOR CONTACT PROBLEM 

In this section, we describe primal-dual interior point algorithm for contact problem given 

by Tanoh et al.[4],  and then represent proposed algorithm. 

3.1 Primal-dual interior point algorithm for contact problem 

The main idea of interior point method is to remove inequality constraints by using a 

logarithmic barrier function. We consider the following barrier problem:  

   
 

  ( )   ∑   (  
     )

  

   

  (6) 

where   is a positive real parameter. The second barrier term in eq.(6) diverges at the 

boundary of inequality (4), so adding this term makes the optimal point of original problem  

move inside the constraind region.   is the coefficient of the barrier term and it is known that 

the optimal point of barrier problem converges to that of original problem when   tends to 

zero. The orbit that optimal point makes when   moves from infinity to zero is called central 

path  and interior point methods follow this path. The basic procedure is as follows: First, 

initial internal point is set in some way. Second, Newton direction of barrier problem is 

calculated and the step is taken in the direction keeping the updated point inside the 

constrained region. Third,   is decreased in some way. Second and third procedures are 

repeated until current point converges to KKT point of original problem. 

We can straightforwardly get the first order optimal condition of barrier problem in eq.(6) 

by differentiating object function of eq.(6): 

      ∑
  

(  
     )

  

   

    (7) 

Let      (  
     ) , then we can see that eqs.(7) and (4) are equivalent to following 

eqs.(8), (9), (3) and (4): 

     ∑  

  

   

      (8) 

  (  
     )    (          ). (9) 

We can get this condition just by replacing the right hand side of eq.(2) with  . 

In primal-dual algorithm, both   and    are treated as unknown variables. Let    and  

   denote the Newton direction of eqs.(8) and (9), respectively, then the linear equations that 

   and     should satisfy are as follows:  

    ∑   

  

   

     (     ∑  

  

   

  )  (10) 

    
       (  

     )      (  
     ) (          ). (11) 

The coefficient matrices of eqs.(10) and (11) are not symmetric, so we have to use direct 
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solvers or unsymmetric iterative solvers such as GMRES. We can get positive definite 

symmetric coefficient matrix by removing     from eq.(10). The resulting equation is  

(  ∑
  

  
     

  

  

   

  
 )    (     ∑

 

  
     

  

  

   

)  (12) 

After the calculation of     from eq.(12),     is given by: 

    
      

   

  
     

    (          )  (13) 

The residual of eqs.(8) and (9) is defined as 

 (     )  (‖     ∑  

  

   

  ‖

 

 

 ∑|  (  
     )   |

 

  

   

)

 
 

  (14) 

where    (           
)
 
. The primal-dual interior point algorithm is depicted in fig. 2. In 

this algorithm, matrix solver routine is called once per iteration of the main loop in 

computation.  

 

 
Figure 2: primal-dual algorithm 

 

3.2 Proposed algorithm 

We describe proposed algorithm here. Multi-point constraints are considered in the 

algorithm and some minor modifications are applied to primal-dual interior point algorithm 

from the test by electronic device models. 

In this paper, we consider the multi-point constraints that tie two surfaces. Each slave node 

is forced to coincide with its projectioin point on master surface. In this case, the multi-point 

constraints are presented as the following linear equations: 

  
     (          ) (15) 

where     is the number of  multi-point constraints and    is coefficient vector.  

 (             )   (     )      (     )  (           )  

  
 (        )    (          )  

           (          )  

Set               (   ). 

Choose initial     from interior point of (3) and (4) 

 

Main loop 

 If  (     )    then stop 

 Get       from (12) and (13), where    (              
) 

 Use backtracking to find   (     that satisfies following conditions: 

Update                 

 Decrease   as follows:      

Continue loop. 
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We use quadratic penalty method and remove these multi-point constraints. Then, 

objective function is modified as follows: 

  ( )  
 

 
         

 

 
 ∑     

  

  

   

  (16) 

We apply primal-dual interior algorithm to   . Linear equation (12) to calculate    is 

modified as follows: 

(  ∑
  

  
     

  

  

   

  
   ∑     

 

  

   

)    (     ∑
 

  
     

    ∑    
  

  

   

  

   

)  (17) 

    can be calculated by (13). The residual of this system is defined as 

  (     )  (‖     ∑   

  

   

    ∑    
  

  

   

‖

 

 

 ∑|  (  
     )   |

 

  

   

)

 
 

  (18) 

Then we show the present algorithm in fig. 3. The present algorithm differs in two points 

from original primal-dual interior point algorithm. First, we adopt different step factors 1  

and 2  for   and  , respectively. It implies that an interior point method for nonlinear 

functions is applied to the quadratic function     In structural analysis of electronic device 

models, compared with the same step factors, the different step factors can accelerate iteration 

convergence. Next, we introduce ‘decrease ratio’ of   that is equivalent to the interior point 

method for quadratic programming. The primal-dual algorithm in Tanoh et al.[4] decreases 

the value of    regardless of the step length, so it tends to decrease   excessively. 

 

 
Figure 3: proposed algorithm 

 

4 NUMERICAL EXPERIMENTS 

In this section, we present the results of numerical experiment using a laptop PC model. 

We implemented proposed algorithm into FrontISTR[6]. Since FrontISTR supports contact 

analysis function by an active set method and an augmented Lagrange method, we could 

easily implement our algorithm by using its data structure in the contact analysis module. 

 (               )   (     )       (     )  (           )  

  
 (         )    (          )  

            (          )  

Set               (   ). 

Choose initial     from interior point of (3) and (4) 

 

Main loop 

 If   (     )    then stop 

 Get       from (17) and (13) 

 Use backtracking to find       (     that satisfies following conditions: 

 Update                   

 Decrease   as follows:   (   (   )) , where   (     )   

Continue loop. 
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Figure 4 shows a laptop PC model which we use for this numerical experiment. This 

analysis aims to evaluate stress at the liquid crystal display when the rear cover is pressed by 

an external force. The laptop PC model consists of 25 parts and its the total number of DOFs 

is 523,426. Contacts or multi-point constraints are defined between these parts and the total 

numbers of them are 50,658 and 2,492, respectively. 

 

 
 

Figure 4: Laptop PC model. Left : Mesh model, Right : Illustrated parts breakdown of laptop PC. 
 

We used the following parameters: initial                                     . As 

for the contact conditions of which initial gap is to be zero, we set         so that an initial 

condition of     is within the interior point.  

The number of iterations to converge required by the present algorithm and an active set 

method is shown in Table 1. A penalty method is used in an active set method. In this 

problem, an active set method needs one matrix solver execution per iteration of the main 

loop since the objective function is quadratic. Thus, this iteration number is the same as the 

total number of matrix solver executions for both methods. The maximum values of the nodal 

displacements are almost the same for two methods. The iteration number of the present 

algorithm is less than that of an active set method except the case of       . The numerical 

result of       implies that  the convergence of the present algorithm become worse if we 

use too small  , that is, decrease   too excessively. 

 
Table 1: Iteration number of active set method and interior point method for the laptop PC model. 

 

methods   
Max. displacement 

of z direction [mm] 
iteration 

Active set method  4.234 60 

Proposed algorithm 

0.3 4.235 67 

0.4 4.235 55 

0.5 4.235 48 

0.6 4.235 51 

0.7 4.235 58 
 

5 CONCLUSION 

We proposed an interior point method based contact algorithm. It is intended to solve large 

scale contact problems with multi-point constraints which derive from stress analysis of 

electronic device models. We also implemented this algorithm into the open-source 
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FrontISTR, and investigated the performance by the contact analysis of a laptop PC model. 

From the numerical result, we have confirmed the fast convergence of our algorithm but it 

strongly depends on the decrease ratio of parameter  . Therefore, more efficient and robust 

updating strategy of   remains to be open. 
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