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Abstract. It is well understood that the cell-centered least-squares reconstruction suffers
from poor accuracy for high aspect ratio meshes with curvature. Since these meshes
are required for turbulent simulations, a sufficiently accurate reconstruction of primitive
variables are required. In this paper, we present a new method for higher-order solution
reconstruction on high aspect ratio curved meshes that resolves the accuracy issues.

1 INTRODUCTION

Higher order — higher than second order — computation of fluid dynamic equations
is a demanding issue, motivated by a potentially significant cost reduction for complex
CFD problems. For structured meshes, using a higher-order accurate method can be more
efficient both in terms of solution time and memory usage [1]. Research in high-order
unstructured solvers is motivated by the accuracy and efficiency advantages proved in the
application of theses schemes on structured meshes with the flexibility of unstructured
meshes for complex geometries.

A key point in the development of higher-order methods for unstructured meshes is
a higher-order reconstruction of primitive variables within the control volumes. The
construction of a k-exact reconstruction operator is one way to reconstruct a solution
polynomial based on the control volume data. This method dates back to Barth and
Frederickson’s work designing a quadratic reconstruction operator to estimate the advec-
tive flux of the Euler equations [2]. Later, Ollivier-Gooch and Van Altena [3] employed a
k-exact reconstruction procedure for advection-diffusion problems.
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In the context of turbulent flows for aerodynamic applications, it is quite common to
have cells whose aspect ratios are about 10, 000. Furthermore, aerodynamic configurations
typically consist of curved surfaces on which a flow boundary layer develops. As a result,
the simulation of high Reynolds number turbulent flows requires sufficiently accurate
polynomial approximation on high aspect ratio meshes with finite curvature. Mavriplis
[4] examined the accuracy of the least-square technique for second-order discretization
on unstructured meshes. For a cell-centered method on triangular meshes with high
curvature, he showed that the computed cell gradient exhibits poor accuracy even after
weighting the least-squares system to emphasize geometrically close data.

In this paper, we will investigate the accuracy of high-order solution reconstruction
on highly anisotropic meshes with finite curvature for cell-centered discretizations. Our
numerical results show that the cell-centered least-squares reconstruction in its traditional
fashion degrades the solution accuracy on high aspect ratio curved meshes and adding
a weight function does not resolve the issue. Consequently, a new least-squares recon-
struction framework is proposed in which a local tangential-normal coordinate system
is obtained by solving an auxiliary LS problem. We will show that the new coordinate
system improves the accuracy significantly for high aspect ratio cells with curvature.

2 LEAST-SQUARES RECONSTRUCTION

The flow solver approximates the unknown variables of the flow field, u, in the control
volume by reconstructing a piecewise polynomial about the control volume’s reference
point (xi, yi).
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In Equation 1, ui is the value of the reconstructed solution and ∂k+lui

∂xk∂yl
are its derivatives

at the reference point of control volume i which is its centroid for cell-centered schemes.
The flow solver uses a least-squares reconstruction method to determine the coefficients

of the Taylor polynomial. In this method, the coefficients are computed by conserving the
mean value in the control volume and minimizing the error in predicting the mean value
of nearby control volumes [3]. The conservation of the mean within a control volume
requires that
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where xnymi are the moments of area about the reference location. In addition, the error
of the mean value of the reconstructed solution for control volumes in the stencil {Vj}i
should be minimized. The mean value for a single control volume Vj of the reconstructed
solution uR

i is

ūj = u|i +
∂u

∂x

∣∣∣∣
i

x̂ij +
∂u

∂y

∣∣∣∣
i
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where x̂nymij are the moments of control volume j about the centroid of control volume
i. This equation is written for every control volume within the stencil of control volume i.
The minimum number of control volumes in the stencil is more than what is required (3,
9 and 15 for second-, third- and fourth-order reconstruction, respectively). The resulting
least-squares problem is
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where the line separates the conservation of mean constraint from equations to be solved
by least-squares. In this problem, inverse-distance weights, wij, can be set to emphasize
the importance of nearby data.

3 METHODOLOGY

3.1 Interior Curving Strategy

For second-order accurate solvers, the surface of the curved geometry is often repre-
sented by a series of linear elements that are not adequate for higher-order accuracy. As
a result, the effect of curvature must be taken into account in higher-order solvers by a
more accurate representation of boundary faces. When the mesh is comprised of isotropic
triangles, it is possible to just deform the boundary of the elements which are in contact
with the curved boundary. However, this strategy fails when the triangles are highly
anisotropic as is common in boundary layer regions. In this situation, it is necessary to
propagate the mesh deformation into the domain interior to prevent faces from intersect-
ing near curved boundaries. To curve the interior faces of a mesh, there are different
suggestions in literature [5, 6]. In this paper, we use a modified linear elasticity method
due to Wang et al. [7] to project the boundary curvature into the interior edges. In this
method, the deformations are represented using continuous piecewise polynomials within
each element of the original unstructured mesh. For this purpose, six-node quadratic and
ten-node cubic triangular elements are used to represent the boundary geometry up to
third- and fourth-order accuracy, respectively. On the boundary of the domain, the dis-
placement vectors are known and thus Dirichlet boundary conditions are imposed. Solving
the linear elasticity problem gives the displacement, and thus the location of nodes in the
curved mesh.

As described in Section 2, the least-squares solution reconstruction requires the mo-
ments of each control volume about its reference point (Equation 2). These moments can
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Figure 1: The mapping from the reference triangle to the curved element

be easily computed for a linear element by the use of Gauss quadrature integration rule
for triangles; however, calculating the moments of area is not trivial for a curved element.
Considering that the solution of the linear elasticity equation gives the location of all
nodes of an element, the Cartesian coordinate of an arbitrary point within the reference
triangle can be given using the finite element interpolation functions, φj (X, Y ):

x (X, Y ) =
N∑

j=1

xjφj (X, Y ) , y (X, Y ) =
N∑

j=1

yjφj (X, Y ) (5)

where N = 6 for quadratic and 10 for cubic triangles. Figure 1 depicts the mapping from
the straight reference triangle into the physical curved triangle for cubic elements. The
reference point of the curved elements are set to be the mapped location of the reference
triangles’ centroid. For quadratic triangles, the Lagrange interpolation functions are equal
to φc

1,3,5 = −1/9 and φc
2,4,6 = 4/9 for the centroid whereas the tenth node is coincident

with the centroid for a cubic triangle and thus φc
10 = 1, φc

1,...,9 = 0. Therefore,
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We evaluate the moments of area for the physical curved element in (x, y) by integrating
over the reference triangle in (X, Y ) coordinate system:
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where J is the determinant of the Jacobian matrix:
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The integral over the reference triangle can be evaluated by using a sixth-order Gauss
quadrature rule with seven quadrature points over straight triangles with the area of A0

to ensure that the numerical integration does not degrade the overall accuracy of the
reconstruction:

xnymi =
1

Ai

7∑

g=1

wg (x (Xg, Yg)− xi)
m (y (Xg, Yg)− yi)

n |Jg|A0 (8)

3.2 Curvilinear Coordinate

As mentioned earlier, the simulation of high Reynolds number turbulent flows requires
sufficiently accurate polynomial approximation on high aspect ratio meshes with finite
curvature. It is well understood that the cell-centered k- exact LS reconstruction suffers
from poor accuracy on highly skewed meshes over curved surfaces for second-order. Our
numerical results in Section 4 yields the same conclusion for higher than second-order
reconstruction even after weighting the least-squares system by geometrically close data.

Instead, we construct a local curvilinear coordinate system at the reference point of
each control volume. For this purpose, we define a mapping from the physical space into
a tangential-normal coordinate system for cells with high curvature near the walls:

t = a1 (x− xi) + a2 (y − yi) + a3 (x− xi)
2 + a4 (x− xi) (y − yi) + ... (9)

n = b1 (x− xi) + b2 (y − yi) + b3 (x− xi)
2 + b4 (x− xi) (y − yi) + ...

A quadratic mapping from (x, y) to (t, n) is sufficient for reconstruction up to third-
order, whereas fourth-order reconstruction requires a cubic mapping. The mapping is
obtained by the distance function and constructed tangential direction at the cell’s refer-
ence points. The difference in distance from the wall determines the normal coordinate
while the tangent coordinate is obtained by the projection of the vector connecting two
reference points on the constructed tangential direction. This tangential direction is de-
fined as the perpendicular direction to the normal to the wall direction as seen in Figure
2. The two sides of Equation 9 are evaluated for the same handful of control volumes
used in the reconstruction stencil of a particular control volume. To find the mapping
coefficients, an auxiliary least-squares system is solved to give the values of ai and bi.

For solution reconstruction in the new curvilinear coordinates, we require the moments
of control volume i about its reference point:

tnnm
i =

1

Ai

∫

Vi

tnnmdA (10)

The integration is performed over the curved triangles as described in Section 3.1 and the
sixth-order quadrature rule is re-used to find the moments. For this purpose, the location
of each Gauss point in the physical space (xg, yg) is obtained by Equation 5 and the
corresponding Jacobian, Jg, is computed by Equation 7. Then, the non-linear mapping
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Figure 2: Illustration of tangential-normal coordinate construction

of Equation 9 is employed to find (tg, ng). So the moment in the new coordinate system
can be approximated by:

tnnm
i =

1

Ai

7∑

g=1

wgt
m
g n

n
g |Jg|A0 (11)

This procedure can be extended to compute the moments of control volume j about
the reference point of control volume i, i.e. t̂nnm

ij . For these moments, the quadrature
points of control volume j must be combined with the curvilinear mapping coefficients of
control volume i.

4 RESULTS

In this section, we present the accuracy results of k-exact least-squares reconstruction
on anisotropic meshes over curved surfaces. For this purpose, we first generate anisotropic
triangular meshes over a circular arc and use a boundary layer type function to reconstruct.
The reconstruction procedure both in its traditional form and on the new curvilinear
coordinate system is performed and the results are compared. Then, we extend the
analysis to more general meshes by testing in the anisotropic boundary layer region of
unstructured triangular meshes over the NACA 0012 airfoil.

4.1 Circular Arc

Considering that anisotropic meshes are used to capture solution anisotropy, an anisotropic
function must be manufactured to be employed in reconstruction tests. One of the ob-
vious candidates for such a function is the turbulent boundary layer velocity profile. In
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this paper, we make use of Reichardt’s [8] empirical boundary layer profile:

u =

{
2.5 ln

(
1 + 0.4 y+

)
+ 7.8

(
1− exp

(
−y+

11

)
−

y+

11
exp

(
−0.33 y+

))}
u∗ (12)

where y+ is the non-dimensional distance from the wall and u∗ is the friction velocity:

y+ =
yu∗

ν
, u∗ =

√
τw
ρ

(13)

In Equation 13, τw is the wall shear stress which can be related to the friction factor

cf,x =
τw

1
2
ρU2

∞

(14)

and approximated by the one-seventh law:

cf,x =
0.027

(Rex)
1/7

, Rex =
U∞x

ν
(15)

Using Equations 13 to 15, it is possible to simplify u∗ and y+ :

u∗ =

√
0.0135

(ReL.x̄)
1/7

, y+ = ȳ.ReL.

√
0.0135

(ReL.x̄)
1/7

(16)

where x̄ and ȳ are the non-dimensional coordinates based on the length of plate, L.
We assume that L = 1 and take ReL = 107 to provide highly anisotropic behavior for
ū = u/U∞.

Since we are interested in anisotropic meshes over a circular arc, we replace y with
distance from the wall in all above equations. Moreover, x is replaced with the horizontal
distance from the leading edge. Recognizing that the manufactured solution of Equation
12 is singular at the leading edge, a 40◦ circular arc is considered whose initial edge is
sufficiently away from the leading edge, θ = −π/2 (Figure 3). The grid is generated by
(N +1)× (2N + 1) nodes which are uniformly distributed along the arc but stretched out
the wall with a factor of s. The thickness of the first layer is set such that one control
volume exists in the viscous sublayer (y+ < 5) for the coarsest mesh; this is shrunk by a
factor of two at each level of refinement. The quadrilaterals formed by these nodes can be
uniformly (uniform stencil) or randomly (random stencil) divided into two triangles and
perturbed in both directions based on local radial spacing. We consider three different
mesh sizes in which N = 8, 16, 32 and s = 1.6, 1.25, 1.12, respectively. It is worth
mentioning that for all these meshes, the maximum aspect ratio is about 6300. Figure 3
shows the anisotropic solution on a randomly triangulated mesh where N = 16.

Figure 4 shows the L2 norm of higher-order solution reconstruction error for the man-
ufactured function of Figure 3 and the three meshes described. It is seen that the asymp-
totic order of error in the unweighted LS is not consistent with the order of reconstruction
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Figure 3: Anisotropic boundary layer type solution on a circular arc
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Figure 4: Reconstruction error using Cartesian coordinate system

in the range of mesh sizes considered here. Weighting the least-squares system corrects
the asymptotic order of error but at the same time is associated with a noticeable in-
crease in the value of error. The comparison of error values with the solution magnitude
illustrated in Figure 3 implies a large relative error which is not acceptable. There-
fore, traditional higher-order least-squares reconstruction suffers from accuracy issues for
anisotropic meshes over curved surfaces regardless of the weight function.

On the other hand, the asymptotic order of reconstruction error using the new curvilin-
ear coordinate system is consistent with the order of reconstruction and the error values
are significantly smaller compared to the Cartesian coordinates. Figure 5 shows the
reconstruction error for third- and fourth-order reconstruction in the tangential-normal
coordinate system. Also, the first derivatives in both directions are one order less accurate
than the solution, as expected. Note that the normal derivatives are larger due to the
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Figure 5: Reconstruction error using curvilinear t− n coordinate system

No. Number of grid points Number of triangles Ns h ARmax

1 113× 33 7168 65 0.031250 1552.91
2 225× 65 28672 129 0.015625 2442.76
3 449× 129 114688 257 0.0078125 3711.69

Table 1: NACA 0012 mesh specifications

anisotropic property of the test function and thus their relative errors are reported to
be comparable with the tangential derivatives. Moreover, the use of an inverse-distance
weighting reduces the accuracy of higher-order reconstruction as is clear in this figure.

4.2 NACA 0012

As a more general case for anisotropic triangular meshes over curved surfaces, we use
the structured grids generated for turbulent RANS simulation by NASA Langley Research
Center [9]. We randomly triangulate the quadrilaterals and curve the interior faces of the
mesh to fourth-order using a cubic spline representation of the airfoil surface. Table
1 summarizes the specifications of the three meshes employed in this section for error
analysis. In this table, Ns gives the number of points on the airfoil surface (both the
lower and upper surfaces) distributed between the two edges (0 < x < 1) and the mesh
size is considered as the average horizontal distance between these points.

The meshes typically used for viscous flow simulations are comprised of different re-
gions: anisotropic cells with curvature (R1), anisotropic straight cells (R2) and isotropic
cells (R3). Since the calculation of mapping coefficients and moments of area are com-
putationally more expensive for the curvilinear coordinate system, we need to isolate the
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Figure 6: Separate regions for NACA 0012 meshes

regions that require this treatment. Our previous study shows that the LS reconstruction
is well-conditioned and accurate for anisotropic straight meshes along their principal axes
[10]. The anisotropic curved triangles can be recognized as those that have a large aspect
ratio (AR > 10 here) and are fairly well aligned with a wall. The latter can be understood
by the angle between the line that connects the reference location to the closest point on
the wall and the principal axis around which the second moment of area is minimum
(γ < 10◦) . Figure 6 shows the separation of regions.

For reconstruction tests, we just consider R1 colored by blue because that is the region
where traditional LS suffers from accuracy. An anisotropic solution should be manu-
factured for this region and some layers of neighbors in other regions. Therefore, we
re-employ the boundary layer profile of Equation 12 for the triangles with a reference
location in −0.1 < y < 0.1 and x > −0.15 and initialize other control volume averages
with zero. In Equation 16, ȳ is replaced with D for the cells near the wall with a reference
location in 0 < x < 1 and x̄ is replaced with x + 0.2 to prevent singularities near the
leading edge.

Figure 7 compares the L2-norm of error in the reconstructed solution at the cells’ refer-
ence locations between the Cartesian and curvilinear coordinate system for the triangles
in R1. Similar to the results shown for the circular arc, the asymptotic order of error for
unweighted LS in the Cartesian coordinate system is less than what was expected and
weighting the LS system increases the error values. Contrarily, the curvilinear coordinate
system yields error values that are significantly smaller and fall within the expected order.
Again, the unweighted LS produces more accurate reconstructed solution.

5 CONCLUSION

The higher-order cell-centered finite volume solution reconstruction procedure was re-
visited on highly anisotropic meshes over curved surfaces to address the accuracy issues
previously demonstrated for second-order. We performed our numerical tests on stretched
triangular meshes with random stencil over a circular arc and also on meshes used for tur-
bulent simulations over NACA 0012 airfoils. In both cases, we made up a boundary-layer
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Figure 7: Solution reconstruction error for anisotropic curved region of NACA 0012

type anisotropic function for reconstruction.
Our results showed that the LS reconstruction in its traditional form leads to poor accu-

racy of approximated coefficients. Instead, we proposed a new method where a curvilinear
coordinate system aligned with wall is constructed and used for reconstruction. The ac-
curacy results in the proposed coordinates have small values of error and comply with
the expected order of reconstruction with or without geometric weights. Nevertheless,
the unweighted LS errors are noticeably smaller and thus outperform the weighted LS
method.
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