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Abstract. Final aim is to find a closed-form model including a hysteresis operator to
describe wave propagation processes in partially saturated soils. Two models which not
completely fulfil this goal are presented in this paper. The first is a mathematical soil-
moisture hysteresis model in which the Preisach operator is used. However, this model
by Flynn [5] is parabolic and thus, is not suitable to describe wave propagation. The
other is a hyperbolic but linear model which does not include an operator to describe
hysteresis [3]. Nevertheless, hysteresis is accounted for: the wave analysis is performed
for the two limit cases of main drying and main wetting. As in [2] the influence of the
application of drying and wetting data on the propagation of sound waves is studied
for the example of Del Monte sand filled by an air-water mixture. Four waves appear:
one transversal wave and three longitudinal waves. For the waves driven mainly by the
skeleton it could be expected that the influence of the hysteresis in the capillary pressure
curve is negligible. This is different from the expectations for the waves driven by the
pore fluids. The numerical results exhibit – at least for the present example – a smaller
influence than expected.

1 INTRODUCTION

If the pores of a porous medium are filled by two (or more) immiscible fluids, as for
example, water and air, then they are called ’partially saturated’. The pore fluids possess
different partial pressures, i.e. a discontinuity exists in the pressure across the interface
separating them. This difference is called capillary pressure pc. It depends on the geometry
of the pore space, on the nature of the solids and on the degree of saturation S, i.e. the
ratio of the volume occupied by one of the pore fluids over the entire pore volume. The
capillary pressure exhibits different values depending on the initial state of saturation. If,
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Figure 1: Hysteresis in capillary pressure curves. Left: one cycle, right: three cycles (taken from Bear
& Bachmat [4])

initially, a sample is saturated by a wetting fluid then drainage takes place. In the case
of a non-wetting fluid filling the pore space initially, the wetting fluid tends to spread on
the solid wall by imbibition (wetting), gradually displacing the non-wetting fluid. The
hysteresis, i.e. the occurrence of two different branches of the capillary pressure curve
as function of the saturation, reflects the dependence of the curve upon the history of
draining and wetting (see left panel of Figure 1).

For simplicity, in most approaches of partially saturated porous media – including my
own investigations (see: [3]) – only one of the branches is taken into account. But also
models including hysteresis exist. General thoughts concerning hysteresis, following from
studies of magnetism or ferroelectrics, have been taken into account in modeling soil-
moisture hysteresis. The outcome are several either empirical or mathematically derived
models which are introduced in details in [1].

Both empirical models and mathematical approaches aim to fit experimental results as
accurately as possible. Often, not only values on the main hysteresis curves (boundary
curves) but also on inner hysteresis curves (so-called scanning curves) which occur upon
re-wetting and re-drying (see right panel of Figure 1) are of interest. Because of big
differences in the capillary pressure for different degrees of saturation the measurement
is labourious and time consuming and often application of more than one method is
necessary. Of course, one strives to perform as little measurements as possible and to
predict the properties of the curves theoretically.

2 EXAMPLE FOR A PARABOLIC MODEL OF SOIL-MOISTURE HYS-

TERESIS USING THE PREISACH OPERATOR

The first approach introduced here is a mathematical treatment of soil-moisture hys-
teresis based on the Preisach model.

After Flynn [5] the standard approach to the mathematical treatment of hysteresis has
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the following structure: 1) to choose an elementary rate independent hysteresis nonlinear-
ity, a so called hysteron; 2) to treat the complex rate independent hysteresis nonlinearities
as block-diagrams of hysterons and 3) to establish identification principles.

Figure 2: Typical state of
a Preisach plane (from [5]).

One frequently used type of hysteron is the non-ideal relay –
it is the basic idea of the Preisach model [11]. It is characterized
by its threshold values α < β and internal memory state η (t) .
Its output can take one of the two values 0 or 1 which means
that at any moment the relay is either ’switched off’ or ’switched
on’. The output y(t)= Rα,β [t0, η0] x (t) , depends on the input
x (t) and on the initial state η0 which is either 0 or 1. The
main assumption made in the Preisach model is that the system
can be thought of as a parallel summation of a continuum of
weighted non-ideal relays Rα,β, where the weighting of each re-
lay is µ (α, β). Such a summation can be uniquely represented as
a collection of non-ideal relays as points on the two-dimensional
half-plane Π = {(α, β) : β > α}, which is also known as the Preisach plane (the neighbor-
ing figure shows an illustration by Flynn [5]). The colored area S = S(t) is the set of the
threshold values (α, β) for which the corresponding relays Rα,β are in the ’on’ state at a
given moment t. L(t) (the so called staircase) is the interface between the relays, Rα,β,
which are in the ’on’ or ’off’ states. The output of the Preisach model is then represented
by the following formula:

y(t) =

∫

α<β

p (α, β)Rα,β [t0, η0 (α, β)] x (t) dαdβ =

∫

S(t)

p (α, β) dαdβ, (1)

where p (α, β) is an integrable positive function in Π. This function is also called the
Preisach density. Flynn in [5] studies a family of ordinary differential equations with
Preisach hysteresis. He calls them hysteretic differential equations (HDEs) and uses them
to describe the flow of liquids through porous media. In the following the model will be
presented: First the mass balance equation is considered

ρwθ̇ = ρwq, θ (0) = θ0, 0 ≤ θ ≤ θs < 1, (2)

where ρw is the density of water (obviously, for the case of uniform density of water ρw
can be canceled out), θ̇ = dθ

dt
, θs is the moisture content at natural saturation and q is

the net inflow rate of water volume per unit time into a representative elementary volume
(REV). It is assumed that the moisture content is related to the matric potential ψ by the
Preisach operator, i.e. θ (ψ) = P (ψ) . Thus, hysteresis enters equation (2) which becomes
the following HDE

dP [ψ]

dt
= q, θ (0) = θ0, 0 ≤ θ ≤ θs < 1. (3)

In order to close this equation, a law is needed, relating the rate of the liquid flow through
the porous medium to the potential difference, i.e. to Darcy’s law. This law states that
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the flow past two points in the medium is proportional to the difference in their potentials
(ψ1 and ψ2), and is inversely proportional to the distance, L, between them

q ∝
ψ1 − ψ2

L
. (4)

For simplicity, Flynn sets L = 1 m and expresses the law as an equation using the
proportionality constant kc, the conductivity term. Finally, the simplified Darcy law is

q = kc (ψ1 − ψ2) . (5)

If now one of the potentials is considered as a reference potential, the HDE for the
hydrological model takes the following form

dP [ψ]

dt
= f (t, ψ) = kc (ψ − ψref ) , (6)

where P is the Preisach operator.

Figure 3: Data sets of Del Monte sand (from [7]) and fit by use of the ’Wedge Model’ by Flynn [5].

In the book chapter of Flynn et al. [6] and in his Phd thesis [5] three different types
of Preisach densities are investigated and compared, here, only one is picked. It is called
the ’Wedge model’ and the classical van Genuchten equation for the main drying curve is
used to determine the main wetting and the scanning curves

θ (ψ) = θr + (θs − θr)

[

1 +

(

h

hg

)n]−m

, (7)
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therein θ is the volumetric water content, θr the residual water content, θs the water
content at natural saturation, h the soil water pressure head or matric potential, hg a
van Genuchten pressure head scale parameter and n and m are van Genuchten shape
parameters. The ’Wedge model’ contains a one-parameter density, distributed between
the line β = α and the line β = γα, where 0 ≤ γ ≤ 1 is the parameter of the model. The
density within this range is given by

pγ (α, β) =
θs

α (1− γ)

d

dα

(

1 +

(

α

hg

)n)−m

. (8)

For the ’Wedge model’ and each of the other models Flynn required some means of finding
the best possible parameter value to fit the data. He used experimental data given in [7]
for 21 soil types. The theoretical predictions fit well the experimental curves. In Figure 3
the fit for Del Monte sand, which is studied also further in this paper, is reproduced from
[5].

3 LINEAR HYPERBOLIC MODELING OF SOIL-MOISTURE HYSTERE-

SIS AND APPLICATION TO WAVE PROPAGATION

3.1 Main curves

Figure 4: Main drying curve (MDC) fit-
ted to measured drying data (•) for Del
Monte sand taken from Liakopoulos 1966
[9]. The main wetting curve (MWC) has
been predicted by [7].

Most hysteresis models for soils presented in the
literature (on modeling hysteresis see e.g. [1]) pre-
sume that both the main drying curve (MDC) and
the main wetting curve (MWC) (or alternatively the
primary wetting curve (PWC) as illustrated in Fig-
ure 3) are measured and interpolate scanning curves
(i.e. inner curves for further drying and wetting pro-
cesses) from the data of both curves. Parlange, on
the contrary [10], presented an approach to predict
the second boundary and scanning curves in be-
tween from only one boundary curve. Since the
measurements are laborious and time consuming
this offers advantages compared with other meth-
ods. An inconvenience of this model is that it im-
poses a wetting curve without an inflection point [7].
Additionally, for the original model no analytical so-
lution applied to the van Genuchten equation could
be found. However, Haverkamp et al. [7] introduced
an extension which implies that all drying and wet-
ting curves (regardless of the scanning order) have
the shape of the van Genuchten equation [12] in nor-

malized form (7): θ∗ = θ−θr
θS−θr

=
[

1 +
(

h
hg

)n]−m

.
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The above mentioned postulation that all curves are expressed in form of the van
Genuchten function leads to the following equations for the MWC and the MDC

θ∗mw ≡
θmw

θSmw

=

[

1 +

(

h

hgmw

)nmw
]

−mmw

, θ∗md ≡
θmd

θSmd

=

[

1 +

(

h

hgmd

)nmd
]

−mmd

, (9)

where the subscripts mw and md refer to main wetting and main drying, respectively.
Differently from the Parlange model these curves possess an inflection point. The relations
between the specific wetting parameters mmw, nmw and hgmw and the drying parameters
mmd, nmd and hgmd are specified in [7]

mmw = mmd,

nmw = nmd,
and hgmd = 2hgmw, for

{

mmwnmw ≥ 1,

mmdnmd ≥ 1.
(10)

The prediction of the primary wetting curve (PWC) from measured data has been demon-
strated in [7] for 22 different soil samples. For each type the MDC has been fitted to
experimental data, the MWC and PWC have been predicted theoretically and the latter
curve been compared to measured data. In Figure 4 measured data of the MDC, the
fitted MDC and the predicted MWC for Del Monte sand (originally presented in [9]) are
reproduced. The resulting curves are used further to calculate the wave speeds and at-
tenuations of the waves occuring in partially saturated Del Monte sand. The range of the
acoustic properties is determined in calculating them for the limit cases: once the MDC,
the other time the MWC is used representing the relation between capillary pressure and
saturation.

3.2 Linear model for three-component materials

In [3] a linear model for three-component materials with an immiscible mixture of two
pore fluids (F and G) in the pores of a solid material (S) has been introduced. The
fields

{

vS,vF ,vG, eS, εF , εG
}

, the velocities of the three components, the macroscopic
deformation tensor eS and the volume changes of fluid and gas, respectively, satisfy the
following field equations

ρS0
∂vS

∂t
= div

{

λSe1+ 2µSeS +QF εF1+QGεG1
}

+

+ πFS
(

vF − vS
)

+ πGS
(

vG − vS
)

,

ρF0
∂vF

∂t
= grad

{

ρF0 κ
F εF +QF e+QFGεG

}

− πFS
(

vF − vS
)

, (11)

ρG0
∂vG

∂t
= grad

{

ρG0 κ
GεG +QGe+QFGεF

}

− πGS
(

vG − vS
)

,

∂eS

∂t
= symgradvS,

∂εF

∂t
= div vF ,

∂εG

∂t
= div vG, e ≡ tr eS.

Instead of the partial mass densities of the components, ρS, ρF , ρG, the equations depend
on the volume changes of the components e, εF , εG which are defined by
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e =
ρS0 − ρS

ρS0
, εF =

ρF0 − ρF

ρF0
, εG =

ρG0 − ρG

ρG0
. (12)

Quantities with subindex zero are initial values of the corresponding current quantities.
QF , QG and QFG are coupling parameters between solid-fluid, solid-gas and fluid-gas,
respectively. λS and µS are Lamé parameters. The compressibilities of fluid and gas are
denoted by κF and κG.

In principle, the porosity n also is a field and satisfies an own balance equation. How-
ever, if we neglect memory effects, the balance equation can be solved and its consideration
is not longer necessary to solve the problem. The current saturation of the fluid S is not
included in the series of fields. Instead, a constitutive law of van Genuchten type will be
used for this quantity.

The parameters πFS and πGS reflect relative resistances of the flow of the pore fluids
through the channels of the skeleton. They are given by

πFS =
πF

kf
, πGS =

πG

kg
. (13)

As obvious from Table 1, πF and πG account not only for the permeability of the solid but
also for the viscosity of the pore fluid. Van Genuchten [12] not only proposed a theoretical
relationship between the capillary pressure and the saturation but also formulae for the
relative permeabilities kf and kg which depend on the degree of saturation

kf = S
1
2

[

1−
(

1− S
1
m

)m]2

, kg = (1− S)
1
3

(

1− S
1
m

)2m

. (14)

The macroscopic material parameters
{

λS + 2
3
µS, κF , κG, QF , QG, QFG

}

appearing in (11)
have to be specified according to the material. In [3] this is done by applying a transition
from the micro- to the macro-scale. The capillary pressure/saturation relation proposed
by van Genuchten is used. Instead of water contents and pressure head used as variables
in (7) the relation is formulated for saturation and capillary pressure

pc =
1

αvG

[

S(−1/mvG) − 1
]1/nvG

. (15)

Therein parameters with index vG coincide with those without index quoted in Table 1.
Applying the micro-macro transition both to the MDC and the MWC using the mi-
croscopic material parameters given in Table 1 leads to sets of macroscopic material
parameters for main drying and main wetting.

3.3 Wave analysis – propagation of monochromatic waves

By means of the above introduced model the wave propagation in partially saturated
soils is investigated. The fields of the model (11) are assumed to satisfy the relations
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εF = EFE , εG = EGE , eS = ESE , vF = VFE , vG = VGE , vS = VSE ,

n− n0 = DE , E := exp i (k · x− ωt) , (16)

where ES, EF , EG,VS,VF ,VG, D are constant amplitudes, ω is a given frequency and
k is the wave vector. k = kn, where k is the complex wave number and n is a unit
vector in the direction of propagation. Such a solution describes the propagation of plane
monochromatic waves in an infinite medium whose fronts are perpendicular to n.

Substitution of the above relations in the field equations (11)4 yields the following
compatibility relations

EF = −
1

ω
kn ·VF , EG = −

1

ω
kn ·VG, (17)

ES = −
1

2ω
k
(

n⊗VS +VS ⊗ n
)

, i.e. e = −
1

ω
kn ·VSE .

Making use of these relations in the remaining field equations leads to the following set

ω2VS =
λS

ρS0
k2

(

VS · n
)

n+
µS

ρS0
k2

((

VS · n
)

n+VS
)

+

+
QF

ρS0
k2

(

VF · n
)

n+
QG

ρS0
k2

(

VG · n
)

n+ (18)

+ i
πFSω

ρS0

(

VF −VS
)

+ i
πGSω

ρS0

(

VG −VS
)

= 0,

ω2VF = κFk2
(

VF · n
)

n+
QF

ρF0
k2

(

VS · n
)

n+

+
QFG

ρF0
k2

(

VG · n
)

n− i
πFSω

ρF0

(

VF −VS
)

= 0, (19)

ω2VG = κGk2
(

VG · n
)

n+
QG

ρG0
k2

(

VS · n
)

n+

+
QFG

ρG0
k2

(

VF · n
)

n− i
πGSω

ρG0

(

VG −VS
)

= 0. (20)

Separating the contributions and solving the eigenvalue problem yields dispersion relations
for transversal and longitudinal waves. Their solutions specify both the phase velocities
cph = ω

Re(k)
and the attenuations Im(k).

3.4 Numerical example: Del Monte sand filled by air and water

On the example of Del Monte sand filled by an air-water mixture the influence of the
hysteresis in the capillary pressure curve on the propagation of sound waves is studied.
This soil type has been chosen because the van Genuchten parameters needed for the
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Table 1: Material properties of Del Monte sand filled by an air-water mixture.

real compressibility grains Ks = 35 GPa
real compressibility fluid Kf = 2.25 GPa
real compressibility gas Ks = 0.101 MPa
Poisson’s ratio ν= 0.4
shear modulus µS = 0.85 GPa
solid grain density ρSR = 2000 kg m−3

fluid density ρFR = 1000 kg m−3

initial porosity n0 = 0.2975
intrinsic permeability k = 4.5·10−13 m2

water conductivity K = k ρFRg
µw

= 4.44·10−6 m/s

water resistance πF = n0ρFRg
K

= 6.573 · 108 kg m−3s−1

air resistance πG = 1.82 · 105 kg m−3s−1

water viscosity µw = 1·10−3 Pa s
air viscosity µa = 1.82·10−5 Pa s

van Genuchten parameter
n = 4.150
m = 0.518

hg for drying and wetting
hgd = 116.56 cm
hgw = 58.28 cm

α for drying and wetting
αd = 8.745 · 10−5 Pa
αw = 1.749 · 10−4 Pa

earth acceleration g = 9.81m s−2

pressure head h [m H2O] =
capillary pressure pc[Pa]

ρFR [kg m−3] g [m s−2]
⇒ 1 [cm H2O] = 100 [Pa]

αd/w [Pa] = 1

10 g [m s−2] hgd/gw [cm]

prediction of the MWC from the MDC have been already determined in [7] and further
material parameters necessary for the calculation of the acoustic properties have been
specified by others before (e.g. in [8]). The material properties of Del Monte sand filled
by an air-water mixture are summarized in Table 1.

Since the irreducible saturation is very small nearly the whole range of initial satura-
tions 0.01 ≤ S0 ≤ 1 has been studied. The porosity of Del Monte sand is given in [8]
by n0 = 0.2975. The authors refer to measurements of Liakopoulos. Because the values
for the MDC also were measured by him (see Figure 4) this value is also used here even
if in the literature more plausible bigger values between 34.5% and 37% are mentioned.
Also the Poisson ratio of 0.4 seems rather high and the solid grain density of 2000 kg m−3

rather low (compared to pure sand (mS) classified in the German standard DIN 4220 and
studied in [3]). The rather low value for the water conductivity follows from the small
value for the porosity. The value of the shear modulus has been estimated according to
experiences gained on the study of some sands in [3].
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Figure 5: Phase speeds of the transversal wave S and the three longitudinal waves P1, P2 and P3 in
dependence on the initial saturation S0 using the parameters of the MDC (solid lines) and MWC (dashed
lines); (ω = 1000 Hz).

Exemplarily, the dependence of the phase speeds on the saturation is illustrated in
Figure 5 for both MDC and MWC data of Del Monte sand filled by an air-water mixture.
The wave propagation analysis predicts the existence of four sound waves: one transversal
wave S and three compressional waves P1, P2 and P3. The P1-wave is mainly driven by
the skeleton. The P2-wave shows a similar behavior to the sound wave in suspensions: its
speed has a deep minimum in dependence on the saturation. The P3-wave only exists if
at least two immiscible pore fluids occur. Its speed is attributed to the capillary pressure
between the pore fluids.

In order to obtain the results illustrated in Figure 5 the frequency is chosen to be 1000
Hz. This is a typical value for geophysical applications. The results imply that – at least
for the example of Del Monte sand filled with an air-water mixture – the influence of the
hysteresis is very small.

An influence of the application of either drying or wetting data is noticeable most easily
for the P3 wave. The maximum of the speed is bigger for drying than for wetting. Also for

10



Bettina Albers

the P2-wave a difference becomes evident. For small values of the saturation the wetting
speeds are smaller than the drying speeds. However, these observations most likely do
not have any practical bearing. Both the P2- and P3-waves, which are effected by the
existence of the fluid and the gas, are strongly damped. For the P3-wave the attenuation
is so high that an observation of this wave in the field may be nearly impossible.

The attenuations of the waves which are not presented here (see [2]) show in the range
of low initial saturations (approximately 0-50%) also a small influence for P1-waves. This
is a range of initial saturations which appears in arid regions. In such regions special
measuring techniques are necessary because the capillary pressure or suction is extremely
high. As pointed out above also the theoretical results show that the region of high
capillary pressures must be attached an important bearing in the differentiation between
wetting and drying.

As could be expected, the shear wave which is mainly affected by the shear modulus,
the compressibility modulus and the mass density of the solid, is unconcerned of whether
drying or wetting data are used. In contrast, the propagation of the P3-wave is influenced
in the whole range of initial saturations. This could be expected because this wave arises
only due to the capillary pressure or surface tension between the two pore fluids and this
is different for drying and wetting for different saturations.

4 CONCLUSIONS

In this work the phenomenon of hysteresis in the capillary pressure in partially sat-
urated soils, i.e. different drying and wetting curves for certain degrees of saturation,
has been addressed. Two modeling approaches have been introduced. A mathematical
model using a Preisach operator and a linear continuum model. Final aim is to construct
a model with hysteresis operator which is able to describe wave propagation processes.
Both presented models do not completely match this goal. The first contains an operator
but is parabolic and thus not suitable to describe wave propagation. The second one is
hyperbolic but does not contain an operator so that drying and wetting data have to be
employed separately. Nevertheless the wave analysis has been carried out by means of
the latter model for the example of Del Monte sand filled by an air-water mixture. Four
waves appear: one transversal wave and three longitudinal waves. For the waves driven
mainly by the skeleton it could be expected that the influence of the hysteresis in the
capillary pressure curve is negligible or small. This is different from the expectations for
the pore fluid driven waves. The numerical results exhibit a smaller influence than ex-
pected. This may have several reasons: firstly, the porosity of the studied sand has been
chosen rather small, secondly, it may be not sufficient to investigate only one soil type,
thirdly, the prediction of the main wetting curve should be proven by own experimental
data. Therefore the measurement of the main drying and wetting curves of twelve dif-
ferent soil types studied in [3] has been requested in a laboratory and will be interpreted
theoretically once available.
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