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Abstract. In this contribution we focus on the numerical simulation ofself-healing poly-
mer composites using the Theory of Porous Media (TPM). The model consists of four different
phases: solid matrix material with embedded catalysts, liquid healing agents, solid healed mate-
rial and air. The amount of catalysts inside the matrix is described by their local concentration.
For the description of damage behavior, a discontinuous damage model is used. Furthermore,
in view of the change from liquid healing agents to solid healed material, a mass exchange be-
tween these two constituents is introduced, dependent on the local concentration of catalysts.
Finally, the applicability of the developed macroscopic four phase model is presented by means
of a numerical example in comparison with an experiment.

1 INTRODUCTION

Traditionally, engineers design materials and structuresin such a way that they have in-
creased strength and stiffness in order to prevent damage and failures. But natural materials,
like skin or tree bark, can deal with failures in a more efficient way: they heal by themselves.
Inspired by these naturally self healing mechanisms, the field of research with respect to man-
ufactured self healing materials growth steadily in the last years. For example, [1] developed a
self healing system with microencapsulated healing agentsand catalysts embedded in a poly-
mer matrix. If a crack breaks through such a capsule, the healing agents flow into the crack and
polymerize due to reaction with the embedded catalysts, which leads to the closure of the crack
and, hence, regaining of a certain amount of strength and stiffness.

Regarding the numerical modeling of self healing polymer materials, some references will
be introduced in the following.
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Figure 1: Homogenization of the microstructure.

Self healing effects of polymers in an analytical manner where analyzed by [2]. Regarding
fiber reinforced composites the self healing behavior was investigated and simulated by [3–5].
In view of the development of thermodynamically consistentmodels it is referred to [6–8]. In
[9] the simulations base on Continuum Damage Mechanics (CDM), and [10] taking continuous
damage and healing variables into account. The model of [11]based on the Mixture Theory.

2 THEORETICAL FRAMEWORK

In order to describe the coupled multiphase problem the Theory of Porous Media (TPM)
is used, which is a macroscopic continuum mechanical approach and combines the Mixture
Theory with the Concept of Volume Fractions.

Within the Theory of Mixtures, allκ constituentsϕα, whereα denotes the distinct phases
of the model, are assumed to be statistical distributed overthe observed volume. All differ-
ent constituentsϕα appear in every material pointX of the observed volume simultaneously
(superposition). Furthermore, the appearing geometricaland physical quantities are defined as
statistically averages of the real quantities in the observed body. Using the Concept of Volume
Fractions the different constituents in a material point can be identified by their volume frac-
tions, i.e., the real quantities can be described in terms ofpartial quantities. Exemplary, the
partial densityρα of a certain constituent can be directly related to its real densityραR using
the corresponding volume fractionnα = dvα/dv, such thatρα = nαραR. The sum over allκ
volume fractions in a material point is restricted by the so called saturation condition

κ
∑

α=1

nα = 1 . (1)

For a detailed discussion of the TPM, the interested reader is referred to BOWEN [12, 13], DE

BOER [14,15], EHLERS [16], and EHLERS & B LUHM [17].
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Figure 2: Illustration of the multiplicative decomposition of the deformation gradient corresponding to the solid
phase.

3 SIMPLIFIED FOUR PHASE MODEL

Before we build up our four phase model, consisting of the solid matrix material (S) with
dispersed catalysts (C), liquid healing agents (L), solid like healed material (H), and the gas
phase (G), which represents the air, some assumptions are made: the influence of temperature
is excluded; dynamic effects are neglected; a phase transition just happens between the liquid
like healing agents and the solid like healed material; the gas phase is compressible, all other
phases are incompressible; the volume fraction of catalysts is very small compared to the other
phases, such it can be neglected with respect to the saturation condition.

Furthermore, it is assumed that the velocity of the solid andthe healed material are identical
and also the motion itself of these two phases are equal, except at an initial motion. This leads
to a multiplicative decomposition of the deformation gradient, depicted in Figure 2, in the form

FS = Grad χS =
∂χS

∂XS

= FH FS0 (2)

proposed in [18–20]. Due to the multiplicative decomposition of the deformation gradient, three
different right Cauchy-Green deformation tensors (solid,initial part of solid motion and healed
material) are available,

CS = FT

S
FS , CS0 = FT

S0
FS0 , ĈH = FT

H
FH . (3)

3.1 Field Equations

Under consideration of the above mentioned assumptions, the set of governing field equa-
tions are given by the balance equation of mass for the solid,healed material, liquid healing
agents, catalysts and gas,
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(nS)′
S
+ nS div x′

S
= 0 , (nH)′

S
+ nH div x′

S
=

ρ̂H

ρHR
, (4)

(nL)′
L
+ nL div x′

L
= −

ρ̂H

ρLR
, nS (cC)′

S
− div (nS cC wCS) = ρ̂C ,

(nG)′
G
+ nG div x′

G
+

nG

ρGR
(ρGR)′

G
= 0 ,

and the balance equations of momentum for the mixture as wellas for the liquid and gas phases

div TSHLG + ρSHLG b = − ρ̂H wLS , div TL + ρL b = − p̂L , (5)

div TG + ρG b = −p̂G .

The symbol(. . . )′α indicates the material time derivative of the value with respect to the
corresponding constituentα, whereas ˆ(. . . ) labels the direct production terms of mass and mo-
mentum, respectively. Here, the direct production terms ofmass for the healed material (ρ̂H)
and the catalysts (̂ρC) depend on the concentration of the catalysts, whereas the direct produc-
tion terms of momentum for liquid (̂pL) and gas (̂pG). The relative velocities with respect to
the solid phase are defined bywζS = xζ − xS. The valuecC ∈ [0, 1] indicates the concen-
tration of catalysts andTα = (Tα)T are the symmetric Cauchy stress tensors for the different
constituents. The expressionsTSHLG andρSHLG describe the sum of the corresponding Cauchy
stresses and partial densities, respectively, of the individual phases.

3.2 Constitutive Relations

In the following, the derivation of the constitutive relations for the Cauchy stresses and for
the direct production terms of mass and momentum are briefly discussed following the thermo-
dynamically consistent derivation of [21].

Due to the evaluation of the entropy inequality, the resulting restrictions with respect to the
Cauchy stressesTα are given by

TSH = − nSH λ I + TSH

E
, TL = −nL λ I + TL

E
, (6)

TG = − nG λ I + TG

E
, TC = TC

E
,

with the effective stress parts

TSH

E
= 2 ρS FS

∂ψS

∂CS

FT

S
+ 2 ρH FH

∂ψH

∂ĈH

FT

H
, TL

E
= − nL ρL

∂ψL

∂nL
I , (7)

TG

E
= − nG ρL

∂ψL

∂nG
I , TC

E
= − nC ρC

∂ψC

∂nC
I ,

and the Lagrange multiplier
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λ = (ρGR)2
∂ψG

∂ρGR
− ρL

∂ψL

∂nG
. (8)

The Lagrange multiplier is to be understood as a reaction force (pressure) on the rate of the
saturation condition, which has to be considered with respect to the evaluation of the entropy
inequality. A detailed discussion about the influence of thesaturation condition on the consti-
tutive relations can be found in [15].

Introducing the considered free Helmholtz energy functions for the different constituents

ψS =
1

ρSR
0S

(1−DS)[
1

2
λS(log JS)

2 − µS log JS +
1

2
µS(CS · I− 3)] , (9)

ψH =
1

ρHR

0H

ǫH(1 − DH)[
1

2
λH(log JH)

2 − µH log JH +
1

2
µH(ĈH · I− 3)] ,

ψL =
1

ρLR
0L

{kL
h
[−dilog

1

sL
− log(

sL
0

sL
− sL0 ) log

1

sL
+ log(1− sL0 ) log

sL
0

sL
+

+dilog
1

sL0
+ log(1− sL

0
) log

1

sL0
]} ,

ψG = −ΘRGρGR

0G
ρGR(log

ρGR

0G

ρGR
−
ρGR

0G

ρGR
+ 1) + pGR

0 ρGR ,

ψC =
1

ρCR

0C

[
1

2
kC log

1

cC
− pCR

0
log

1

cC
] ,

the constitutive relations for the Cauchy stresses read

TSH = − nSH λ I +
1

JS
{ ( 1 − DS ) [ 2µSKS + λS ( log JS ) I ] + (10)

+ǫHnHJS(1−DH)[2µHKH + λH(log JH)I]} ,

TL = − nL pLR I , TG = − nG pGR I , TC = − nC pCR I .

Here,λS, µS andλH, µH are the Lamé constants of the solid and healed material phase. The
parameterǫH is chosen in such a way that the productǫH nH is equal to one if the liquid like
healing agents are completely transformed into solid healed material. This ensures that the
healed material comes full into play only if the structure istotally healed in this material point.
The Karni-Reiner strain tensors of the solid and healed material are given byKS = 1

2
(BS − I)

andKH = 1

2
(BH − I), whereBS = FSF

T

S
andBH = FHF

T

H
are the left Cauchy-Green strain

tensors of the solid and healed material.
In order to describe the damage behavior of both, the solid and healed material independently,

two different damage functions are introduced. Here, the socalled(1−D) approach, introduced
in [22], is used. For a detailed discussion of this discontinuous damage model see also [23,24].

The Lagrange multiplierλ consists of the real gas pressurepGR and an additional pressure
part, in the following denoted byph, aligned to the capillary pressure presented in [21], depend-
ing on the liquid saturation,
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λ = pGR − ph , (11)

whereinph is defined as

ph = kL
h
sL

[

log

(

sL
0

sL
− sL

0

)

− log (1 − sL
0
)

]

. (12)

The constantskL
h

andsL0 are material parameters and the liquid saturationsL = nL/(nL +nG) is
the ratio of liquid with respect to the whole hollow space inside the observed body. Furthermore,
the real gas pressure is described by the nonlinear gas law

pGR = −ΘRG ρGR

0G log
ρGR

0G

ρGR
+ pGR

0 , (13)

whereΘ is the absolute temperature,RG denotes the specific gas constant,ρGR

0G
andpGR

0
are

initial real gas density and the initial real gas pressure. The real liquid pressurepLR is also
described by a saturation dependent function given as

pLR = pGR + kL
h

[

log

(

sL
0

sL
− sL

0

)

− log
(

1 − sL
0

)

]

, (14)

see also [21]. Finally, the last pressure part of Eq. (10) is the real pressure of catalysts, which is
given by

pCR = −kC log
1

cC
+ pCR

0
, (15)

whereat the concentration is defined as the quotient of volume fractions of catalysts and solid
cC = nC/nS.

In order to describe the mass exchange between the liquid healing agents and the solid healed
material an ansatz for the production term of healed material. Therefore, the production function
proposed in [25] is used. Here, this function is modified suchthat it depends on the concentra-
tion of catalysts,

ρ̂H = ρ̂H
m

(

cC − cC
0

cCm

)2

exp

[

1 −

(

cC − cC
0

cCm

)2
]

. (16)

Therein,ρ̂H
m

is the maximum value of̂ρH andcC
0

the maximum value of the concentration. The
valuecCm denotes the change of concentration whereρ̂H becomes its maximum.

Due to the fact that the concentration of catalysts decreasein the areas where healing occur,
the total production term of mass for the catalystsρ̂C is negative and set to be constant. Further-
more, due to the evaluation of the entropy inequality, the direct production terms of momentum
for liquid and gas are given by
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p̂L = λ grad nL − ph grad nG + p̂L

E
, (17)

p̂G =
(

λ + ph
)

grad nG − p̂G

E
.

In Eq. (17) the vectors

p̂L

E
= − γL

wLS
wLS − γL

wGS
wGS , p̂G

E
= − γG

wGS
wGS − γG

wLS
wLS (18)

denote the effective parts of the direct production terms ofmomentum, whereat the occurring
material parameters are restricted by

γL
wLS

≥ 0 , γG
wGS

≥ 0 , γL
wGS

+ γG
wLS

= 0 . (19)

4 NUMERICAL EXAMPLE

In order to show the applicability of the developed model, a numerical simulation of a real
experiment, cp. [26], is carried out. The dimensions of the specimen and the damaged virtual
specimen are depicted in Figure 3. Here, the virtual specimen is discretized with142 linear
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Figure 3: TDCB geometry, cp. [26] (left); damaged virtual specimen (right).

eight-nodular brick elements and the total number of degrees of freedom is2492. On both
flanks a displacement ofu = 0.6 mm is applied in y-direction. Moreover, the boundary surface
at the beginning of the notch is open for the gas phase, i.e., air can flow in and out.

During the loading the TDCB fails. After that, the specimen is unloaded, because in the
experiment the specimen is also just able to heal, if the crack faces come into contact. Then, the
TDCB gets 48 hours resting time before it is reloaded. As it isdepicted in Figure 4, the results of
the numerical simulation is qualitatively in a very good agreement to the experimental results.
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Table 1: Initial material parameters.

S H L G C unit
Young’s modulusEα 3.0e+9 3.0e+9 – – – Pa
Poisson’s ratioνα 0.2 0.2 – – – –
real densityραR

0α 1200.0 980.0 980.0 1.0 – kg/m3

Darcy parameterkαDarcy – – 9.0e-9 5.0e+2 – m4/N s
Parameter associated with healingkLh – – 5.0e+1 – – Pa
initial volume fractionnα 0.7 0.0 0.2 0.1 – –
initial concentrationcα

0
– – – – 1.0 ×100%

initial saturationsL
0

– – 0.9 – – –

Figure 4: Experimental result, cp. [26] (left); result of the numerical simulation (right).

5 CONCLUSION

The presented work concentrates on the numerical simulation of damage as well as heal-
ing effects in a self-healing polymer composite. As the underlying theoretical framework the
Theory of Porous Media is used. The developed multiphase model consists of the solid matrix
material with dispersed catalysts, the liquid like healingagents, the solid like healed material,
and the gas phase. For the separate description of damage forthe solid and the healed material,
two different damage functions are introduced based on the(1 −D) approach. In order to de-
scribe the healing mechanism, a phase transition between the liquid healing agents and the solid
healed material is considered.

To show the applicability of the developed model, the numerical simulation of a tapered
double cantilever beam (TDCB) is compared with the experimental result from [26]. The sim-
ulation shows a qualitatively good agreement with the experimental observation, even for the
healing efficiency. The divergence between both results canbe explained, e.g., due to the fact
that the healing of the real specimen depends on different factors, like wetting, different distri-
butions of microcapsules and catalysts in the damaged area,etc.. Hence, it can be assumed that
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the resulting load-displacement curves of different specimens vary.
As next step, the model should be extended in order to describe also fiber reinforced com-

posites (FRCs), which are of great interest in the fields of, e.g. aerospace or wind power plants.
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