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Abstract. In this contribution we focus on the numerical simulationseff-healing poly-
mer composites using the Theory of Porous Media (TPM). Theehoonsists of four different
phases: solid matrix material with embedded catalystsidigealing agents, solid healed mate-
rial and air. The amount of catalysts inside the matrix idbed by their local concentration.
For the description of damage behavior, a discontinuousagamrmodel is used. Furthermore,
in view of the change from liquid healing agents to solid bdahaterial, a mass exchange be-
tween these two constituents is introduced, dependentefodal concentration of catalysts.
Finally, the applicability of the developed macroscopiarfphase model is presented by means
of a numerical example in comparison with an experiment.

1 INTRODUCTION

Traditionally, engineers design materials and structumesuch a way that they have in-
creased strength and stiffness in order to prevent damatédares. But natural materials,
like skin or tree bark, can deal with failures in a more effiti@ay: they heal by themselves.
Inspired by these naturally self healing mechanisms, tte dieresearch with respect to man-
ufactured self healing materials growth steadily in thé yasirs. For example, [1] developed a
self healing system with microencapsulated healing agamiscatalysts embedded in a poly-
mer matrix. If a crack breaks through such a capsule, therfieagients flow into the crack and
polymerize due to reaction with the embedded catalystssiwleiads to the closure of the crack
and, hence, regaining of a certain amount of strength affidess.

Regarding the numerical modeling of self healing polymetamals, some references will
be introduced in the following.
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Figure 1: Homogenization of the microstructure.

Self healing effects of polymers in an analytical mannerstenalyzed by [2]. Regarding
fiber reinforced composites the self healing behavior wasstigated and simulated by [3-5].
In view of the development of thermodynamically consistandels it is referred to [6-8]. In
[9] the simulations base on Continuum Damage Mechanics (N [10] taking continuous
damage and healing variables into account. The model ofifd4¢d on the Mixture Theory.

2 THEORETICAL FRAMEWORK

In order to describe the coupled multiphase problem the fjhebPorous Media (TPM)
is used, which is a macroscopic continuum mechanical appraad combines the Mixture
Theory with the Concept of Volume Fractions.

Within the Theory of Mixtures, alk constituentsp®, wherea denotes the distinct phases
of the model, are assumed to be statistical distributed theeobserved volume. All differ-
ent constituent®® appear in every material poiX of the observed volume simultaneously
(superposition). Furthermore, the appearing geometaicdlphysical quantities are defined as
statistically averages of the real quantities in the olbegthody. Using the Concept of Volume
Fractions the different constituents in a material point ba identified by their volume frac-
tions, i.e., the real quantities can be described in ternfgadial quantities. Exemplary, the
partial densityp® of a certain constituent can be directly related to its remsity p°® using
the corresponding volume fractiart = dv®/dv, such thap® = n“p°®. The sum over alk
volume fractions in a material point is restricted by the albed saturation condition

> ot =1 1)

For a detailed discussion of the TPM, the interested readeferred to BWEN [12, 13], DE
BOER([14,15], EHLERS[16], and EHLERS & BLUHM [17].
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Figure 2: lllustration of the multiplicative decomposition of thefdrmation gradient corresponding to the solid
phase.

3 SIMPLIFIED FOUR PHASE MODEL

Before we build up our four phase model, consisting of thedsmlatrix material (S) with
dispersed catalysts (C), liquid healing agents (L), sokd healed material (H), and the gas
phase (G), which represents the air, some assumptions ake e influence of temperature
is excluded; dynamic effects are neglected; a phase tiamgitst happens between the liquid
like healing agents and the solid like healed material; te& ghase is compressible, all other
phases are incompressible; the volume fraction of catlgstery small compared to the other
phases, such it can be neglected with respect to the satucathdition.

Furthermore, it is assumed that the velocity of the solidthedchealed material are identical
and also the motion itself of these two phases are equalpeatan initial motion. This leads
to a multiplicative decomposition of the deformation geadi depicted in Figure 2, in the form

OXs
Fs = Grad = == = FyF 2
S rad Xg X H r'so (2)
proposed in [18—20]. Due to the multiplicative decompositof the deformation gradient, three
different right Cauchy-Green deformation tensors (safidial part of solid motion and healed
material) are available,

Cs = Fg Fg, Cso = F3, Fso, Cy = FLFy. (3)

3.1 Field Equations

Under consideration of the above mentioned assumptioassdhof governing field equa-
tions are given by the balance equation of mass for the dodidled material, liquid healing
agents, catalysts and gas,
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~H
(0%)§ + n® divxg = 0, (M) + n' div x§ = ppH—R, (4)
~H
(") + n" div xp, = — ;—R, nS (c€)y — div (n°c®weg) = p°,

G
n
() + 0 div g+ o (655 = 0,

and the balance equations of momentum for the mixture asaséddir the liquid and gas phases

div TSHLG pSHLGb = —ﬁH WS, div TV + pr = —p", )
div T¢ + pSb = —p©.

The symbol(...)!, indicates the material time derivative of the value withpesg to the
corresponding constituent whereag. . ) labels the direct production terms of mass and mo-
mentum, respectively. Here, the direct production termmass for the healed material)
and the catalysts){') depend on the concentration of the catalysts, whereasire groduc-
tion terms of momentum for liquidp(*) and gas p“). The relative velocities with respect to
the solid phase are defined by.s = x; — xs. The valuec® € [0, 1] indicates the concen-
tration of catalysts an® = (T<)T are the symmetric Cauchy stress tensors for the different
constituents. The expressiomS™™“ and > describe the sum of the corresponding Cauchy
stresses and partial densities, respectively, of the iichaial phases.

3.2 Constitutive Relations

In the following, the derivation of the constitutive relatis for the Cauchy stresses and for
the direct production terms of mass and momentum are brieftyidsed following the thermo-
dynamically consistent derivation of [21].

Due to the evaluation of the entropy inequality, the resgltiestrictions with respect to the
Cauchy stresseB“ are given by

TSH = —pSHAT 4+ TSH, TV = —nlAT + Tk, (6)
TC¢ = —n®AI + TS, TC = T¢,

with the effective stress parts

S H L
T%H:2pSFS§%Fg+2pHFH§g Ff, TE:—anL%I, (7)
S H
Y np°
G __ G L C _ c C
Te=-—wrigeh Te=-wrgel

and the Lagrange multiplier
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e oyt
A= (pGR)2 6PGR - pL 6HG . (8)

The Lagrange multiplier is to be understood as a reactiocef@ressure) on the rate of the
saturation condition, which has to be considered with retsfmethe evaluation of the entropy
inequality. A detailed discussion about the influence ofghtiration condition on the consti-
tutive relations can be found in [15].

Introducing the considered free Helmholtz energy funditor the different constituents

1 1 1
Y = pS—R<1 — DS)[§)\S(10g Js)? — 1 log Js + QMS(CS -I-3)], 9)
0S
1 1 1 R
Pt = pH—RfH(l - DH)[Q/\H(log Ju)? — plog Ju + §MH(CH I-3)],
OH

Pt = L{kL[—dilogi —1lo (i —s5)lo S +log(1 —s§) lo ﬁ +
P{){\ h gL & gL 0 gSL & 0 gSL

L1 1
+dilog + log(1 — sf) log <1} ,
So S0

GR GR
PR
¢ = —ORCp§E PR (log 2 — 200 4 1) 4 R peR

pGR pGR ’
y© = %[ékc log - — p§™1og ¢,
the constitutive relations for the Cauchy stresses read
TSH:—nSH)\I—l—J—lS{(l—DS)[Q,LLSKS+)\S(logJS)I] + (10)
+etn™Jg(1 — DY) (2 MKy + A (log Ju)T)}
TL = —nlplRI, TG = —nGpGRT, TC = —nCpCRT.

Here, A5, 1/° and \H, 1 are the Lamé constants of the solid and healed materiabphEse
parametee!! is chosen in such a way that the proddén' is equal to one if the liquid like
healing agents are completely transformed into solid loealaterial. This ensures that the
healed material comes full into play only if the structuréoilly healed in this material point.
The Karni-Reiner strain tensors of the solid and healed riahtre given byKs = 1(Bg — I)
andKy = %(BH — 1), whereBg = FsF! andBy = FyFj are the left Cauchy-Green strain
tensors of the solid and healed material.

In order to describe the damage behavior of both, the sotithaaled material independently,
two different damage functions are introduced. Here, theafled(1— D) approach, introduced
in [22], is used. For a detailed discussion of this discardirs damage model see also [23, 24].

The Lagrange multiplieh consists of the real gas pressyf& and an additional pressure
part, in the following denoted by", aligned to the capillary pressure presented in [21], dépen
ing on the liquid saturation,
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A = pf — p", (11)

whereinp" is defined as
SL
h— gLl {log(——so) log(l—so)} ) (12)

The constants)’ ands| are material parameters and the liquid saturatios n"/(n" +n%) is
the ratio of liquid with respect to the whole hollow spacedieshe observed body. Furthermore,
the real gas pressure is described by the nonlinear gas law

% = —ORE /5 log ZOG + pi®, (13)

where® is the absolute temperaturB® denotes the specific gas constasjfy andpS™t are
initial real gas density and the initial real gas pressurbe feal liquid pressurp'® is also
described by a saturation dependent function given as

L

pLRszRJrk:}I; {log(s——so) 1og(1—sI5) , 14

see also [21]. Finally, the last pressure part of Eq. (1d)es¢al pressure of catalysts, which is
given by

1
pt = —k¢ log — + ps, (15)

whereat the concentration is defined as the quotient of welfractions of catalysts and solid
c® =n“/n5.

In order to describe the mass exchange between the ligulih@gents and the solid healed
material an ansatz for the production term of healed méatéreerefore, the production function
proposed in [25] is used. Here, this function is modified sttt it depends on the concentra-
tion of catalysts,

) ) C _ € 2 C _ C 2

Therein,p!! is the maximum value of*! andc§ the maximum value of the concentration. The
valuec® denotes the change of concentration whgrdecomes its maximum.

Due to the fact that the concentration of catalysts decneatbe areas where healing occur,
the total production term of mass for the catalystss negative and set to be constant. Further-
more, due to the evaluation of the entropy inequality, tmediproduction terms of momentum
for liquid and gas are given by
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p’ = X\ grad n — p" grad n% + pk, (17)
p¢ = (/\ + ph) grad n¢ — f)g

In Eq. (17) the vectors
P = — Vars WLS — Vaves WGS PE = — Vs WGS — Vs WLS (18)

denote the effective parts of the direct production termm@fentum, whereat the occurring
material parameters are restricted by

Yos = 0, Yo =0, Ak 95, =0. (19)

4 NUMERICAL EXAMPLE

In order to show the applicability of the developed modeluanarical simulation of a real
experiment, cp. [26], is carried out. The dimensions of fecgnen and the damaged virtual
specimen are depicted in Figure 3. Here, the virtual spatimeliscretized withl42 linear

5
76.2

61
28

92 l a‘ ‘£.25

Figure 3: TDCB geometry, cp. [26] (left); damaged virtual specimegH(t).

eight-nodular brick elements and the total number of degoddreedom is2492. On both
flanks a displacement af = 0.6 mm is applied in y-direction. Moreover, the boundary suzfac
at the beginning of the notch is open for the gas phase, irea@a flow in and out.

During the loading the TDCB fails. After that, the specimsrunloaded, because in the
experiment the specimen is also just able to heal, if thekdiemxes come into contact. Then, the
TDCB gets 48 hours resting time before itis reloaded. Asdeigicted in Figure 4, the results of
the numerical simulation is qualitatively in a very goodeggnent to the experimental results.
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Table 1: Initial material parameters.

S H L G C unit
Young’s modulusi® 3.0e+9 3.0e+9 - - - Pa
Poisson’s ratio/® 0.2 0.2 - - — —
real densitypglt 1200.0 980.0 980.0 1.0 —  kgfm
Darcy parametety,,,.., - - 9.0e-9 5.0e+2 - #MNs
Parameter associated with healil|y - - 5.0e+l - - Pa
initial volume fractionn® 0.7 0.0 0.2 0.1 - -
initial concentratiorc§ — — — - 1.0 x100%
initial saturations}y - - 0.9 - - -
60 [y 60
50 ; ; n= 90.3% é 50
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Figure 4: Experimental result, cp. [26] (left); result of the nuneadisimulation (right).

5 CONCLUSION

The presented work concentrates on the numerical simolafi@amage as well as heal-
ing effects in a self-healing polymer composite. As the ulyiteg theoretical framework the
Theory of Porous Media is used. The developed multiphaseshwoahsists of the solid matrix
material with dispersed catalysts, the liquid like healaggnts, the solid like healed material,
and the gas phase. For the separate description of damaie &olid and the healed material,
two different damage functions are introduced based orilthe D) approach. In order to de-
scribe the healing mechanism, a phase transition betwedigthd healing agents and the solid
healed material is considered.

To show the applicability of the developed model, the nuoarsimulation of a tapered
double cantilever beam (TDCB) is compared with the expemntagesult from [26]. The sim-
ulation shows a qualitatively good agreement with the @rpamtal observation, even for the
healing efficiency. The divergence between both resultseaexplained, e.g., due to the fact
that the healing of the real specimen depends on differetris, like wetting, different distri-
butions of microcapsules and catalysts in the damagedeieaHence, it can be assumed that
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the resulting load-displacement curves of different specis vary.
As next step, the model should be extended in order to desat#o fiber reinforced com-
posites (FRCs), which are of great interest in the fields.gf, @erospace or wind power plants.
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