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Abstract. Incompressible smoothed particle hydrodynamics method has been used to
simulate the descent of a solid disk in quiescent medium under gravitational acceleration.
Using a single domain approach, we have studied the effects of viscosity ratio and in-
terpolation scheme. Comparison with available data in the literature shows quantitative
agreement.

1 INTRODUCTION

The interaction of a solid body with a fluid environment is one of the most common
flow features in nature and industry covering a gamut of phenomena from the motion
of a school of fish within water to rotating blades of a pump. As such, it has been the
subject of interest for many studies involving computational fluid dynamics [1–3]. Particle
methods are particularly suitable for these problems as discretization points may move
with the solid body and conform to the boundaries [4–6].

In this study, a two–dimensional Incompressible Smoothed Particle Hydrodynamics
(ISPH) scheme based on the projection method proposed by Cummins and Rudmann [7]
is developed to simulate the interaction between a passive solid object and the surrounding
fluid. The scheme is based on a single domain model where all phases within the system
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are treated as fluids with different viscosities [1, 8] while the solid phase is represented
by particles of fixed relative configuration. As such, the value of viscosity chosen and
the scheme of interpolation used to transition between the solid and fluid phases are
of utmost importance in accurate representation of the physical phenomenon. Weighted
harmonic averaging and a viscosity ratio of 100 are observed to provide satisfactory results
during the simulations and are employed to perform a simulation of a solid disk settling
in a quiescent fluid under gravity. The results of the simulations are in agreement with
literature data.

2 GOVERNING EQUATIONS

Equations governing an incompressible flow may be written in non–dimensional form
as

∇ · u = 0, (1)

Du

Dt
= −∇p+

1

Re
∇ · τ , (2)

where u is the velocity vector, p is pressure, ρ is density, t is time and D/Dt = ∂/∂t+u ·∇
represents the material time derivative. Here, τ and Re are viscous stress tensor and
Reynolds number, respectively. Viscous stress tensor is defined as

τ = µ
[
∇u+ (∇u)†

]
, (3)

where µ denotes viscosity and superscript �† represents the transpose operation. Non–
dimensional values are formed using the following scales

x = x∗/d, ρ = ρ∗/ρf , u = u∗/
√
gd, t = t∗

√
g/d, (4)

p = (p∗ − ρgy) / (ρgd) , R = ρs/ρf , M = µs/µf ,

leading to a Reynolds number defined as

Re =
ρf
√
gd3

µf
, (5)

where g is the gravitational acceleration in vertical direction y and d denotes disk diameter.
An asterisk marks dimensional variables whereas subscripts �s and �f denote fluid and
solid phases, respectively.

To distinguish between different phases, a color function ĉ is defined such that it as-
sumes a value of zero for one phase and unity for the other. The color function is then
smoothed out across the phase boundaries as

ci =
Jn∑
j=1

ĉjWij

ψi

(6)
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to ensure smooth transition between the properties of each phase when used for their
interpolation. Here, ψi =

∑Jn
j=1Wij, is the number density of SPH particle i, calculated

as the sum of interpolation kernel of neighboring particles i and j over all neighbors of
particle i, Jn. Interpolation kernel, W (rij, h), is a function of the magnitude of distance
vector, rij = ri − rj, between particle of interest i and its neighboring particles j and h,
the smoothing length [9, 10]. Interpolation of phase properties may be carried out as
Weighted Arithmetic Mean (WAM),

ϕi = ϕsci + ϕf (1− ci) , (7)

or Weighted Harmonic Mean (WHM),

1

ϕi

=
ci
ϕs

+
1− ci
ϕf

, (8)

where ϕ may denote viscosity or density.
All phases are treated as liquids and are evolved through equations 1 and 2. However,

to impose rigidity constraints, we use the current velocity of the solid particles to compute
a center–of–mass velocity and an angular velocity for the solid object:

uts =
1

Js

Js∑
j=1

uj, (9)

urs =
1

Is

Js∑
j=1

uj × rjs, (10)

and then assign an individual velocity to each solid particle according to rigid body
motion:

ui = uts + urs × ris. (11)

Here, ris = ri − rs where rs denotes the solid object’s center of mass, Js is the number of
particles present in the solid phase and Is is the solid object’s moment of inertia about
its center of mass.

A predictor-correcter scheme is employed to advance the governing equations of flow
in time using a first-order Euler approach with variable timestep according to Courant-
Friedrichs-Lewy condition, ∆t = CCFLh/umax, where umax is the largest particle velocity
magnitude and CCFL is taken to be equal to 0.25. In the predictor step all the variables
are advanced to their intermediate form using the following relations,

r∗i = r
(n)
i + u

(n)
i ∆t+ δr

(n)
i , (12)

u∗
i = u

(n)
i +∇ · τ (n)

i ∆t, (13)

ψ∗
i = ψ

(n)
i −∆tψ

(n)
i (∇ · u∗

i ) , (14)
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where starred variables represent intermediate values and superscript (n) denotes values
at the nth time step. The artificial particle displacement vector in (12), δri, is defined as
in [11] and a constant value of 0.06 is used.

Using intermediate values, pressure at the next time step is found by solving the Poisson
equation which is then followed by corrections in position and velocity of the particles,
completing the temporal transition:

∇ ·
(

1

ρ∗i
∇p

(n+1)
i

)
=

∇ · u∗
i

∆t
, (15)

u
(n+1)
i = u∗

i −
1

ρi
∇p

(n+1)
i ∆t, (16)

r
(n+1)
i = r

(n)
i +

1

2

(
u
(n)
i + u

(n+1)
i

)
∆t+ δr

(n)
i . (17)

In these equations, the rigidity constraints (9–11) are implemented after each velocity
update.

Boundary conditions are enforced through MBT method described in [12] while first
derivative and Laplace operator are approximated through the following expressions

∂fmi
∂xki

akli =
∑
j

1

ψj

(
fmj − fmi

) ∂Wij

∂xli
, (18)

∂2fmi
∂xki ∂x

k
i

amli = 8
∑
j

1

ψj

(
fmi − fmj

) rmij
r2ij

∂Wij

∂xli
. (19)

Here, akli =
∑

j

rkij
ψj

∂Wij

∂xli
is a corrective second rank tensor that eliminates particle inconsis-

tencies [11]. Left hand side of (15) is discretized as

∂2fmi
∂xki ∂x

k
i

(
2 + akki

)
= 8

∑
j

1

ψj

(
fmi − fmj

) rkij
r2ij

∂Wij

∂xki
. (20)

3 GEOMETRY AND PARAMETERS

A solid disk is allowed to descend from rest under gravity in quiescent medium. Our
computational domain consists of an 8 × 24 rectangle discretized by 62854 particles po-
sitioned along concentric circles at uniform radial spacing around the solid disk’s center.
The radial spacing is chosen such that 10 circles fit inside the disk while the number of
particles along each of these circles vary to keep the overall inter–particle spacing across
the computational domain as uniform as possible. The disk is positioned at (4, 16) having
a unit diameter (figure 1).

The proposed scheme for simulation of passive solids treats all phases as liquids of
different viscosities initially, only to differentiate the solid phase by the rigid–body con-
straints (9–11) afterwards. As such, the viscosity ratio between the phases and the way
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Figure 1: Closeup view of initial particle distribution at the vicinity of the solid disk. Black points
denote solid particles whereas gray points are fluid particles.

Table 1: Viscosity ratio and interpolation scheme for all test cases

Case C1 C3 C10 C30 C100 C300 C1000 C100A
M 1 3 10 30 100 300 1000 100

Interp. Sch. WHM WHM WHM WHM WHM WHM WHM WAM

the transitions and interpolations are carried out have significant effects on the results
obtained. A series of simulations have been carried out to asses the aforementioned ef-
fects. Table 1 provides viscosity ratio and interpolation scheme of the test cases simulated.
Reynolds number is set to 39.1 and a density ratio of 1.25 is chosen for the simulations.

4 RESULTS

In this section, the results for simulation of the descent of the solid disk at different
viscosity ratios and averaging schemes are presented.

As the proposed scheme treats all phases as liquids and applies rigidity constraints
afterwards, the velocities obtained by individual solid particles during liquid phase treat-
ment affects the overall motion of the solid after the constraints are applied. It is expected
to achieve a solid-like behavior at large enough viscosities. However, a threshold has to be
set as larger viscosity ratios may destabilize the simulation. To this end, viscosity ratios
of 1 through 1000 are tested (table 1). Figure 2 presents vertical position and vertical
velocity of the solid disk’s center of mass versus time. The general trend consists of an
acceleration stage, descent at constant velocity and deceleration when approaching the
bottom of the domain. It appears that the profiles converge at around a viscosity ratio of
100. To demonstrate the difference between disk positions better, figure 3 provides con-
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Figure 2: Vertical position (left) and vertical velocity (right) of the solid disk’s center of mass versus
time for all test cases.

Table 2: Time and vertical velocity of solid disk’s center of mass at y = 6 for all test cases

Case C1 C3 C10 C30 C100 C300 C1000 C100A
t 31.8981 32.7057 33.0270 33.1203 33.1550 33.1600 33.1680 35.9186
uy -0.3662 -0.3572 -0.3537 -0.3528 -0.3525 -0.3524 -0.3524 -0.3283

tours of the solid disk when case C100 is at y = 6, during its descent at terminal velocity.
The differences between profiles become negligible for viscosity ratios above 100. Time
until the disks reach y = 6 and their terminal velocity at the same height are provided
for all test cases in table 2.

In conjunction with viscosity ratio, the interpolation scheme used to transition through
phase boundaries affects the outcome of the simulation as well. To demonstrate this
effect, WAM scheme is compared to WHM scheme. In WAM, the transition occurs at
equal distances at both sides of the phase boundaries whereas in WHM the transition is
skewed toward the higher–valued material property. As higher viscosity generates larger
skin friction, it is desired to avoid transition in fluid domain as much as possible. In
this sense the use of WAM, which generates a thicker region of higher viscosity inside the
fluid domain than WHM, hinders the descent of the disk. Simulation results presented
in figures 2, 3 and table 2 bear out the observation that the WAM case lags behind all
WHM cases.

Based on the observations made above, a viscosity ratio of 100 with WHM interpolation
scheme has been chosen and the results are provided in figure 4. The right portion of
the figure provides velocity vectors and contours of velocity magnitude on the left column
and streamlines and pressure contours on the right column at y = 6, when the disk
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Figure 3: Disk position for all test cases when C100 is at y = 6.
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Figure 4: (Left) Comparison of vertical velocity of solid disk’s center of mass with respect to its vertical
position. (Right) Close up of the disk at y = 6, descending at its terminal velocity; Left Column: velocity
vectors and contours of velocity magnitude; Right Column: streamlines and pressure contours.
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is descending at its terminal velocity. Figure 4–left shows the comparison of vertical
velocity versus vertical position of the disk’s center of mass compared with the Weakly
Compressible SPH (WCSPH) simulations of Hashemi et al. [13] and fictitious domain
approach of Glowinski et al. [1]. Our scheme is able to capture the motion of the disk
within the quiescent medium with quantitative accuracy.

5 CONCLUSION

In this paper, we have presented an ISPH–based method for simulating the motion of
a passive solid in a body of fluid. The effects of viscosity ratio and interpolation scheme
on the performance of the proposed scheme for simulation of a descending solid disk in
quiescent medium are evaluated. The simulation data with properly matched parameters
are found to be in agreement with previous results in the literature.
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