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Abstract. The paper focuses on application of multibody system approach for the torque and 

drag analysis of long drill strings. The approach is used to get improved results as compared 

with those obtained by soft-string models. The analysis is carried out by integration of 

equations of motion of the drill strings till reaching equilibrium under externally applied loads 

corresponding to conditions of drilling operations. A small value of kinetic energy serves as a 

criterion for finishing the simulation. To increase the convergence, high damping is applied to 

the drill string. Such damping is absent in the real well bores. It leads to speedy fall of the 

kinetic energy in a few seconds after start of the integration. However, low frequency 

oscillations with very small value of the energy appear if length of the drill string is several 

kilometers. As the result, the equilibrium position is reached very slowly. In order to 

overcome this effect, the three-step algorithm is proposed. It is based on the solution of static 

equations of the drill string for calculation of initial conditions that is used for dynamic 

simulation. Using the algorithm, torque and drag analysis of the drill string up to ten 

kilometers in length takes several minutes on modern computers. Some simulation aspects, 

such as efficiency of parallel computations are also considered in the paper. 

1 INTRODUCTION 

Computer simulation is a widespread approach for torque and drag analysis of drill strings. 

It is the important phase of planning of wells and selection of proper parameters of drilling 

operations. Dynamic simulation of long drill strings is related to certain difficulties. One of 

those is large number of degrees of freedom of the models. The second one is stiff equations 

of motion that require special integration methods. For calculations of very long drill strings, 

so called soft-string models that ignore bending stiffness are commonly used [1, 2, 3]. It is 

assumed that a drill string contacts with a well bore in each point along the full length. Such 

models produce quite accurate results for axial loads and torques if the drill string does not 
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buckle. However, it cannot compute real contact forces between the drill string and wellbore, 

cannot simulate buckling and real drill string rotation. 

In this paper, a multibody system approach to dynamical simulation of long drill strings is 

suggested. The aproach is described in details in paper [4]. A drill string is simulated as a set 

of uniform flexible beams connected via viscous-elastic force elements. Each beam can 

undergo arbitrary large displacements as a rigid body but its flexible displacements due to 

elastic deformations are assumed to be small. The methods of floating frame of reference for 

flexible bodies and component mode synthesis are used for modelling of dynamics of the 

beams. Parameters of the coupling force elements are calculated automatically based on 

stiffness and inertia characteristics of the connected beams. The approach allows simulating 

the dynamics of drill strings including such processes as vibrations, rock cutting, friction, 

hydraulics as well as buckling and post-buckling behaviour. Its use for the torque and drag 

analysis is considered below. 

2 MATHEMATICAL MODEL 

2.1 Equations of motion 

Equations of motion of a flexible beam can be written in the following general form: 

qDCqfffkqM   cag
,  

where q is the column vector of generalized coordinates, k is the column vector of 

generalized inertia forces; fg, fa, fc  are the generalized gravity, applied and reaction forces; M, 

C and D are the mass, stiffness and damping matrices of the beam. 

Flexible displacements of the beam are described using the modal approach. Its application 

to dynamic simulation of drill strings is considered in [4]. In this section, the main ideas of the 

method are briefly recalled for completeness. 

The local coordinate system (CS1) is linked to the body (Figure 1). Position rk of an 

arbitrary point K in the global coordinate system (CS0) can be presented as the sum of the 

radius-vector r1 of the origin CS1 relative to CS0 and the radius-vector rk1 of point K in CS1. 

  

Figure 1: Position of an arbitrary point K of a flexible body 
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Vector rk1 is as a sum of vector k of the point coordinates of the undeformed body, 

constant in CS1, and vector dk of the flexible displacement.  

Then the position of point K in CS0 can be found as follows:  

)( )1()1(

01

)0(

1

)0(

kkk dρArr  ,  

where the superscript is the index of coordinate systems in which vectors are presented, A01 is 

the rotation matrix. 

Flexible displacements of the body are presented using the finite element method and the 

modal approach: 

Hwhx 



H

j

jjw
1

,  

where x is the N×1 column vector of nodal degrees of freedom (DOF), N is the number of 

DOF, hj are the modes of the flexible body, wj are the modal coordinates of a flexible body, H 

is the number of modes used, H is the N×H modal matrix. 

Thus, the set of generalized coordinates of the beam includes six coordinates for the 

description of motion of the local frame and H modal coordinates related to flexible modal 

displacements. 

Basic matrix H is created in accordance with component modes synthesis method and can 

be represented in the following block form: 











E0

SY
H ,  

where columns of the matrix Y are the fixed-interface normal modes, columns of the matrix S 

are the constraint modes and E is the unity matrix. The number of the constraint modes is 

equal to 6×ni, where ni is the number of the interface nodes. Number of normal modes is 

selected by a researcher. Then, matrix H is transformed and six modes are removed to exclude 

motion of the beam as rigid body relative to the local frame of reference [4]. 

Note that in most cases of simulation of drill strings, use of constrained modes only is 

enough for achievement of acceptable results. Thus, the minimal number of the general 

coordinates of the beam is equal to 12. 

2.2 Numerical method and parallel computations 

In order to overcome limitations related to the large number of degrees of freedom and to 

increase effectiveness of the simulation, the algorithm for parallel generation and numerical 

solution of equations of motion are developed. Parallel computations for multi-core 

processors are implemented according to the fork-join method. 

The equations of motion of drill strings are normally stiff. The main cause of the equation 

stiffness is stiff forces such as forces in the connections of the beams and contact forces 

between the drill strings and well bores. A force is considered to be stiff if its value 

significantly changes under small variations of relative positions and velocities of interacting 

bodies. 
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The analytic expressions for Jacobian matrices of stiff forces are derived and applied 

within implicit Park method to increase the integration step size [5]. 

2.3 Model of contact between well bore and drill string 

Contact interactions are simulated by specialized Circle-Cylinder contact force elements 

(Figure 2).  

 

Figure 2: Circle-Cylinder contact model 

The contact force element uses a compliant contact between a circle and a cylinder, which 

axis is set by a smooth curve. The diameter of the cylinder can vary to describe the 

dependency of cross section of a hole on its depth. The normal force N depends on the depth 

of penetration and damping rate in the contact. The model of the friction force can be 

described as follows. 
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where µ is the dynamic friction coefficient, N is the absolute value of the normal force, vs is 

the vector of sliding velocity that can be presented as the sum of the longitudinal speed vl of 

the drill string and the tangent velocity of the contact point that equal to rω , 
*

sv is the small 

empirical value of sliding velocity. If the sliding velocity as not small, the classical model of 

friction is used, else the viscous damping is considered (see the figure below). In the 

simulation the 
*

sv  value is equal to 0.01× r, where r is the radius of the contact circle. 

 
The contact force element is added to each of the points of beam connections. The 

diameter of the contact circle is equal to the greater of two outer diameter of adjacent beams. 
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The dynamic simulation for torque and drag analysis can be carried out by two ways. The 

first of them is modelling of real rotation of the drill string. Then the penetration and angular 

speed of the drill string segments will be different due to transient processes appear and 

stationary motion is observed after long simulation time. The second one is use of the values 

of vl and  as parameters of a drilling operation for direct calculation of the forces vF  and F . 

The results presented in this paper are obtained by the second way.  

3 PROCEDURE OF TORQUE AND DRAG ANALYSIS 

3.1 Integration of equations of motion of a drill string 

Torque and drag analysis of the drill string is reduced to the search of equilibrium 

conditions under given loads. A small enough value of the kinetic energy of the drill string is 

the criterion to finish the integration of the equations of motion. To increase the convergence 

of the calculations, unrealistic high (additional, not present in reality) internal and external 

damping forces are applied to the drill string. It can lead to the problems of simulation of very 

long drill strings when the processes with very low frequencies are observed. For example, 

torsional vibrations of the drill string of six kilometers in length are not completely damped 

when the threshold value of the kinetic energy equal to 1 Joule is reached. Therefore, values 

of axial torque are wrong to the end of simulation. Further decrease of the boundary value of 

the kinetic energy leads to multiple increase of the simulation time when the calculations can 

take few hours. 

3.2 Algorithm of multistep torque and drag analysis 

To speed-up the convergence to the equilibrium position, a three-step algorithm has been 

developed. The basic idea for the algorithm is a fast calculation of the initial position of a drill 

string that is near to equilibrium one. 

At the first step, initial values of displacements and rotation angles of drill string parts are 

calculated using static equations. The drill string is considered as a chain of rigid segments 

connected via joints at their ends. Cross-sections, lengths and material properties of the 

segments correspond to the parameters of the drill string sections. The forces and moments in 

the interconnections of the segments are obtained from equilibrium conditions of each 

segment sequentially segment-by-segment. The boundary conditions for the first segment are 

defined by parameters of the drilling operation.  

Flexible displacements and rotation angles of segments of the drill string expressed in the 

modal coordinates are computed using the results of the static solution. At the second step, the 

calculated longitudinal displacements and forces are applied to the full dynamic model of the 

drill string and equilibrium conditions are computed by integration of equations of motion. 

Finally, rotation angles and axial torques are applied and then values of all parameters 

corresponding to the operation conditions are obtained by integration of equations of motion. 

Let us consider the steps of the algorithm in details. 

3.2.1 Static equations 

In this section, the procedure for calculation of all forces acting on the segments of the drill 

string under given boundary conditions and operation parameters is considered. It is based on 
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the static equations. 

A well bore centerline is defined by points in the global coordinate system (CS0). The 

cubic spline is used for approximation of the axis. The natural coordinate system in the point i 

on the centerline is specified as follows (Figure 3): 

- Zi axis is directed along the tangent  to the well bore centerline against the direction of 

increase of the depth; 

- Xi axis is normalized vector product of Z0 and Zi; Xi = Z0 × Zi. If the product is zero 

(angle between Z0 and Zi equal to 0), Xi is parallel to X0; 

- Yi is normalized vector product of Zi and Xi; Yi = Zi × Xi. 

For the torque and drag analysis of a drilling operation, end points of the rigid segments 

are placed on the well bore centerline (Figure 3). Forces acting on segments of the drill string 

are calculated segment-by-segment from the end with defined boundary condition to another 

one. For example, if axial force and torque that act on the bit are set, calculations are carried 

out from the bit to the hook. 

In general case, the following loads can be applied to the segment i (Figure 4): 

- Q1, Q2  are the lateral forces at the end points 1 and 2; 

- T1, T2  are the axial forces; 

- M1b, M2b are the bending moments; 

- M1t, M2t are the torques; 

- G is the weight of the segment in the fluid; 

- Fc is the centrifugal force acting on the segment if the drilling operation with rotation is 

simulated; it is computed using the expressions presented in [6]; 

- Fb is the buckling normal force arising if drill string loses stability helically; the 

expressions for the force value are given in [7, 8]; 

- the friction force Ff  and the friction moment Mf. They act in the end points with contact 

circles. The radius of the contact circle is equal to the bigger radius of two adjacent 

sections (one uniform section can includes several segments). 

 

Figure 3: Natural coordinate system in the point i on the centerline of a well bore 
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Figure 4: Arrangement of end points of the drill string on the wellbore centerline and the forces acting on 

segment i. 

Let us consider some expressions and equations for calculation of the values mentioned 

above. The bending moments can be optionally computed. Their values in the end points of 

the segments are calculated using the relative bending angles i between axes of the segments 

i-1 and i: 

LEIM ib / , 

where EI/L
 
is the smallest stiffness of two adjacent segments; E, I, L are correspondingly 

Young modulus, the bending inertia moment and the length of the segment with smallest 

stiffness. 

The lateral force in the bottom point 2 of segment i is calculated using the following 

equilibrium condition: 

0)(5.0)( 212

*
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*
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j
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The lateral force Q2 is calculated as the sum of the projections on X2 and Y2: 

yx 222 QQQ  , 

*

12

*

1222 /)( xyxx rMeeQ  , 
*

12

*

1222 /)( xxyy rMeeQ  , 

where 
yx 22 ,ee  is the unit vectors (orts) along the axes of the natural coordinate systems in 

point 2, 
*

12xr  is the length of the projection of the vector product r12 and e2y on X2: 

)( 2122

*

12 yxxr ere  . 

The friction forces and moments can be calculated by formula (1) using the lateral forces. 

All calculated loads are applied for the computations of initial displacements and rotation 

angles of the segments at the first step of the algorithm. 
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3.2.2 Calculation of initial position of a drill string 

Flexible modes of a beam can be separated on the longitudinal, torsional and bending ones. 

Then the elongation of the drill string under acting loads can be written as the sum of the 

longitudinal displacements in the connections between the beams and elongations of the 

beams described by corresponding modal coordinates. Twisting of the drill string can be 

presented in the same manner. Let us consider the expressions for calculation of mentioned 

values. 

In an initial position, curvilinear coordinates of the origins of the local frames and nodes of 

the segments correspond to their longitudinal coordinates z on the straight drill string where 

zero value of z is the upper point, maximal value z is the bit point. The calculations are carried 

out in accordance with the following expressions (Figure 5): 

)(1

)(0

)1(2)(0
2

ic

ii

ini z
ll

zz 


  , 

)(1

)(1

iz

i
ic

c

F
z  , 

ii

iii
inin

AE

lFl
zz

22

)(0

)(2)(1 


 , 

 

where 
)(0 iz  is coordinate of local frame of the segment i, 

)(1 icz  is displacement of the end 

node 1 of the segment i relative to the end node 2 of the segment i-1, 
)(2)(1 , inin zz   are the 

longitudinal flexible displacements of the end nodes of segment i reference to the local frame, 

ii ll ,)(0
 are the length of the undeformed segment i and its elongation, iE  is Young modulus 

and iA  is the area of the cross-section of the segment i. 

 

Figure 5: Calculation of the initial positions of the segment i with use of the static results 

The following assumptions are used for the calculations: 

1) the constant longitudinal force acts on each segment; its value is equal to the half-sum 

of the forces calculated in end nodes 1 and 2: 

2
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 ; 

2) the drill string is elongated due to the first longitudinal mode only. 

Note that only one longitudinal mode is usually used in the modal matrix.  

Flexible displacements of the nodes are expressed in the modal coordinate. For example, 

formula for end node 1 can be presented as follows: 
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)(11)(1)(1 )( ilnilin wizhz  , therefore 
)( 1)(1

)(1

)(1

nil
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 ,  

where 
)(1 ilh  is the first longitudinal mode of the segment, 

)(1 ilw  is the modal coordinate 

corresponding to the first longitudinal mode, 1niz  is the index of z coordinate of the end node 

1 in the list of nodal coordinates. Thus, the initial values for the generalized coordinates 
)(0 iz  

and 
)(1 ilw are calculated. 

The torsion initial conditions are calculated in the same way. 

After the second step, equilibrium position of the drill string without taking into account 

the rotation angles is computed. The drill string bends depending on the shape of the well 

bore and acting loads. In the third step, each beam of the bended drill string is rotated along 

its longitudinal axis. In order to leave the drill string in the state near to equilibrium, the 

modal coordinates of the beams can be recalculated to turn back the bending plane. All 

bending modes of the uniform beams are pairwise. The pairwise modal coordinates with the 

indices j and j+1 corresponding to the bending modes are transformed using the following 

expressions: 

)cos()sin(

)sin()cos(
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, 

 

where z is the rotation angle of the local coordinate system of the beam around local axis z. 

4 SIMULATION EXAMPLE 

In this section, the efficiency of simulation of the field case with the long drill string using 

the proposed algorithm is considered. The shape of the well bore centerline and outline of the 

drill string are presented in Figure 6. The drill string consists of the bottom hole assembly and 

1058 drill pipes. The operation parameters are given in table 1, the model parameters are in 

table 2. The numerical experiments are carried out using Intel Core i7 processor 3.4GHz. 

Dynamic simulation without setting initial conditions in accordance with the proposed 

algorithm leads to the following results. Kinetic energy of the drill string decreases from 315 

kJ to 3 kJ during one and a half seconds after the simulation start. Then, decay of the kinetic 

energy slows down significantly. After 170 seconds of simulation time, the value of the 

kinetic energy is equal to 30 Joules (Figure 7). The low frequency oscillations are observed. 

To that moment, the bit is twisted around the longitudinal axis on 336 radians (more than 53 

revolutions). Required time for the calculations exceeds three hours. The torques acting on the 

beams of the drill string does not achieve its true value. 

If initial conditions calculated by static equations are set, the equilibrium position is found 

in 18 seconds of simulation time. It takes about 8 minutes of real time if 3 threads of 

multicore processor are used for the computations. There are no low frequency oscillations in 

the graph of kinetic energy (Figure 8). The subsequent increase of the thread number does not 

lead to speed-up of the simulation. The efficiency of the parallel calculations is shown in table 

3. 

The specialized software including soft-string and multibody models has been developed 

for torque and drag analysis of the drill strings. In the presented case, the results obtained by 
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both of approaches are very close (Figure 9). The graphs of the axial load are practically the 

same. 

  
 

a) well survey 3D view b) bottom hole assembly c) 1058 x 4", drill pipe, H90, 

E75, IU, 11.85 ppf 

Figure 6: Three-dimensional view of the well bore centerline and outline of the drill string in the example 

Table 1: Operation parameters for rotary drilling 

Parameter Value in 

Imperial units 

Imperial 

unit 

Value in SI 

units 

SI unit 

Bit depth 32 991  ft 10 055.7 m 

Weight on bit  2.25  kip 10 kN 

Torque on bit  3.69  kip×ft 5 kN×m 

Rate of penetration 98.43 ft/hr 30 m/hr 

Rotating speed 50 rpm 50 rpm 

Table 2: Model parameters 

Parameter Value 

Number of beams 2 189 

Number of degrees of freedom 26 304 

Total mass of the drill string, kg 191 761 

Maximal dogleg of the well bore, degrees/100ft 14.46 

Maximal curvature of the well bore, 1/m 0.0077 

Fluid density, kg/m
3
 1138.35 

Fluid dynamic viscosity, Pas 0.07 

Table 3: Efficiency of parallel computing 

Number of threads CPU time, min:s Speeding up factor  

1 14:05 1.00 

2 9:56 1.41 

3 8:03 1.74 
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a) start period of the integration b) finish period of the integration 

Figure 7: Kinetic energy of the drill string without set of initial conditions from static analysis 

  
a) start period of the integration b) finish period of the integration 

Figure 8: Kinetic energy of the drill string with set of initial conditions from static analysis 

   
Figure 9: Comparision of results obtained by using soft-string and multibody system approach 
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5 CONCLUSIONS 

- Use of multibody system approach for torque and drag analysis of long drill string is 

encountered with the problem of very slow damping of kinetic energy during the 

integration of the equations of motion of a drill string. The calculations can take 

several hours without success because of low frequency oscillations with small 

energy are observed. 

- The three-step algorithm is suggested for the use within the scope of multibody 

system approach for torque and drag analysis of the long drill strings. In accordance 

with the algorithm, an initial position of the drill string near to the equilibrium is 

calculated based on solution of static equations. Longitudinal displacements of the 

beams and its rotation angles are set sequentially with the search of the intermediate 

equilibrium position. Using this algorithm allows decreasing the calculation time to 

several minutes on modern computers. 

- The application of parallel calculations increases the efficiency of simulation. 

Speedup with the use of three threads is 1.73 as compared with the calculating in a 

single thread. Note, that it is less than acceleration which is usually reached by using 

parallel calculations on multi-thread computers. The typical ratio of the 

computational efficiency is about 2.5. The additional analysis of the calculating 

process is required. 
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