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Abstract. In the design of passive tuned mass damper (TMD) on the vibration control 
performance of spatial structures, we have to decide the both of a spatial arrangement and 
characteristics. To find an optimum design of the system is formulated as Mixed-Integer 
Programming (MIP) problem. It is difficult to obtain the exact global optimum solution in 
general form. We present a method which can guarantee to find a near-optimal solution with 
pre-assigned accuracy. The key concept of the method is random search based on prediction 
by order statistics. Through a numerical example, we investigate the applicability and 
effectiveness of the method to the design of TMD systems. 
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1. INTRODUCTION 
Spatial structures generally possess little inherent damping. These structures tend to vibrate strongly in the 
normal direction of the curved roof. It has been reported that non-structural components; the plumbing, the 
ceiling systems and etc., were damaged by such vibrations, which caused the collapse and fall of the 
components, and injured and killed many people during the 2011 off the Pacific coast of Tohoku 
Earthquake [1]. It is known that passive tuned mass damper (TMD) can be effectively used for the 
vibration control. In particular, multiple TMD (MTMD) is robust when the system is excited by a wideband 
random disturbance [2,3]. This means that the effective use of TMDs enables to prevent or reduce such 
damages. The concept of the spatially distributed MTMD system is illustrated in Fig. 1 [3]. 
 

TMD

 

Figure 1: The spatially distributed TMD system for spatial structures 
 

In this paper, we study an influence of placement of TMDs, i.e., MTMD systems, on the 
vibration control performance. The first explicit formulation of optimal TMD parameters to 
undamped structure have been derived by Den Hartog [4]. Many studies treated optimization 
of TMD system [2-7]. We have to decide the both of a spatial arrangement and parameters of 
the TMDs, which are frequency and damping characteristics. The possible locations for 
TMDs can be modelled as discrete variables, and the characteristics of the ones are treated as 
continuous variables. Thus, to find an optimum design of the MTMD system on the spatial 
structures is formulated as Mixed-Integer Programming (MIP) problem [5]. 

For solving this problems, some techniques are available. The ones are standard 
combinatorial optimization methods. In general, this type of the methods has rigorous 
mathematical backgrounds and can find exact global optimum solution; however, the methods 
need extremely high computational cost depending on the size of the problem. Heuristics are 
other choices; genetic algorithms and simulated annealing are representative ones in this 
category. It has been often reported that heuristics quickly find several near-optimal solutions 
and hence have become popular recently, e.g., [5]. This must be useful approach but we do 
not fully agree with the positive opinion because some of them lack mathematical 
backgrounds. How accurate and/or efficient the solutions are? 

We attempt to mix two methods to design of the spatially distributed MTMD system. The 
one is enumeration method with deterministic procedures, which is used for decision on a 
spatial arrangement of TMDs. The other is random search method (RS) as a probabilistic 
approach [8,9], which is used for decision on characteristics of TMDs. The key concept of RS 
is prediction by order statistics. The method can guarantee the accuracy of a solution in terms 
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of global optimality with a pre-assigned probability. The theoretical result indicates use of 
relatively small samples is enough to predict the large number of future samples. Thus, the 
proposed method is useful to estimate how accurate we obtain the solution in terms of global 
optimality.  

2. PROBLEM FORMULATION 

This section summarizes the problem formulation. This formulation is not new. The reader 
may refer to related studies, e.g. [6], for further details. Consider a multi-degree-of-freedom 
(MDOF) structure with TMDs. Our interest focuses on design of the TMD parameters. The 
parameters are mass, damping, and stiffness of the ones, which are respectively denoted by  

  ; 1 ,, ,j tm m j N  
   ; 1 ,, ,j tc c j N  

   ; 1 ,, ,j tk k j N  

  (1) 

where tN  is number of the TMDs. The differential equations governing the behavior of the 
system subjected to ground excitation can be written as 

 
1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( )
gm t c t k t m a t

t t t

      

M u C u K u M r
z Du D u



 
  



  (2) 

where ( ), ( ), ( ) N Nm c k M C K 


  are mass, damping and stiffness matrices of the system, 

respectively; Nr   is influence vector to the ground motion; and 1
p ND   and 2

p ND  
are velocity and displacement output matrices, respectively. The degree-of-freedom of the 
system is denoted by N , and the number of the outputs is denoted by p . Time-dependent 
vectors ( ), ( ), ( ) Nt t t u u u 



  are acceleration, velocity and displacement vectors relative to 
the ground, respectively; and ( ) pt z   is output vector; ( )ga t  is the ground acceleration. 
The mass, damping and stiffness matrices are assumed to be expressed as follows: 

 0
1

( ) ,
tN

j j
j

m m


 M M M  0
1

( ) ,
tN

j j
j

c c


 C C C  0
1

( ) ,
tN

j j
j

k k


 K K K  (3) 

where 0 0 0, , N NM C K   are mass, damping and stiffness matrices corresponding to the 
structure; and , ,j j jM C K  N N   ( 1, , )tj N   are ones corresponding to the TMDs. The 
equation (2) may be rewritten to a state space equation: 

 
( ) ( ) ( , , ) ( ) ( ) ( ),

( ) ( )

m t m c k t m a t

t t

   
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


   

  (4) 

where 2( ) ( ( ) ( ) )T T T Nt t t x u u

  is state vector and 
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We formulate TMD’s design problem to find TMD’s parameter ( , , )t t tm c k  which 
minimizes the real scalar  , such that inputs and outputs of the system (4) satisfy 

 
2 22

0 0
2

0

( ) ( )

for all ( ) such t a .h t ( )

gt t

g gt

t dt a t dt

a t a t dt







 




 

 


z
  (5) 

When a harmonic excitation 0( ) ei t
ga t a  , where 0,a     is the amplitude and the 

angular frequency, respectively, and 1i   , the frequency response function matrix is 
given by 

   1
( ) ( ) ( , , ) ( ).i i m m c k m 


 G D E A b

     (6) 

We can link the H  norm of the system (4) to the scalar   in inequality (5) as follows: 

  maxsup ( ) ,i


  
 

 GG


  (7) 

where max )(   is the largest singular value of () . When the steady-state response vector and 
ground acceleration are respectively given by 0( ) ( ) i tt e z z  and ( ) i ta t e  , following 
condition is equivalent to condition (7): 

 
  

0
1

0

,( ) for all

( ) ( ) ( , , ) ( )i m m c k m

  

 


 

 

z

z D E A b





  

  (8) 

Thus we formulate the TMD’s design problem to the H  optimal control problem, which can 
be written as 

 
Find , , )

which minimizes o

: (

) :t (

m c k

g


 
 

  G



 

  (9) 

where the parameters of TMD and its feasible set are denoted by ( , , )t t tm c k   and 
tN   , respectively. Furthermore, we assume that 0 vol( )    , i.e., the parameters 

are continuous and bounded. Note that the design problem is a non-convex problem and its 
general form is known as NP-hard. It is extremely difficult to obtain the exact global optimum 
solution in general form. We may not need such exact solution in many practical situations. 
Thus various methods have been proposed to obtain reasonably a local solution in some sense. 
We present a new approach based on RS in next section, which can find approximately 
optimum solution. The method is also positioned to one of heuristics. However, our 
presenting method has advantages, which is easy implementation and enables to control the 
exactness of solutions with pre-assigned accuracy.  

3. PURE RANDOM SEARCH AND ORDER STATISTICS 

We apply RS to solve Problem (9) for obtaining an approximately optimum solution in 
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some sense. In an algorithm of RS, a sequence of random points 1 2, , , n    is generated. 
We will refer to this general scheme as Algorithm 1 (see, e.g., [10]). 
 

Algorithm 1 (general random sampling algorithm) 

1. Generate a random point 1  according to a probability distribution 1P  on  ; 
evaluate the objective function at this point; set iteration counter 1j  . 

2. Using the points 1, , j   and the results of the objective function evaluation 
at these points, check whether j n ; that is, check an appropriate stopping 
condition. If this condition holds, terminate the algorithm. 

3. Alternatively, generate a random point 1j  according to some probability 
distribution 1jP   and evaluate the objective function at  1j . 

4. Substitute 1j   for j  and return to step 2.  
 
The algorithm is called “Pure Random Search (PRS)” if all the distribution jP  are the same 
( jP P  for all j ) [10]. As a result of the application of PRS we obtain independent samples 

1, , }{ n   from a distribution P  on  . Additionally, we obtain an independent sample 
1 1{ ( , ,) )}(n nY g Y g   of the objective function values at the points. The samples jY  

are independent identically distributed random variables (iidrv) with a common continuous 
cumulative distribution function (cdf) of a random variable Y . The cdf is defined as 

    ( ) Pr P : ( )rF t tt Y g       ,  (10) 

where the function f  is formally defined as the probability density function (pdf). The cdf F  
is assumed to be continuous but unknown. 

The iidrv 1, , nY Y  are arranged in increasing order of magnitude and the k th value is 
denoted by ,k nY  such that 

 1, 2, , ,n n k n n nY Y Y Y     .  

The ,k nY  is referred to as the k th order statistics, see, e.g., [11,12]. We use the k th order 
statistics instead of the unknown exact global minimum value. The accuracy of this approach 
is linked with cindtion: 

  ,Pr ( )k nF Y      (11) 

with parameters ,  .  Equation (11) means at least 100 % confident that at most a 
proportion   of the population is less than ,k nY . This type of formulation is known as 
distribution-free tolerance interval [11-13]. 

Consider we select ( , )k n  such that following condition is satisfied: 

  1 , 1 1 ,I k n k        (12) 

where ( , )pI a b  is incomplete beta function which is given by 
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1 1

0
1

1 1

0

(1 )
( , ) ,

(1 )

p
a b

p
a b

t t dt
I a b

t t dt

 

 









  (13) 

then condition (11) holds true [9]. Therefore, condition (11) is equivalent to condition (12), 
which corresponds to stopping rule of Algorithm 1. 

4. NUMEIRICAL EXAMPLE 

4.1. Main structure 

To demonstrate the applicability of the proposed method, we consider an arch-frame model, 
which is studied by Tsuda et al. [7], shown in Fig. 2. The span and height of the model are 
79m and 20.2m, respectively. The model without TMDs, which is referred to as the main 
structure, has 13 nodes and lumped mass of 6,000 kg is placed each node. The total mass of 
the main structure is 78,000 kg. The flexural rigidity of columns and members of arch roof  
are 2.42×109 N⋅m2 and 2.77×109 N⋅m2, respectively. We assume a Rayleigh damping for the 
main structure such that the damping ratio is 2% for both first and second modes.  

 

m5 m9

c5k5 k9 c9

x

y

79m

1 2 3 4 5 6 7 8 9 10 11 12 13

15
m

5.
2m

 
Figure 2: Arch-frame model with attached TMDs at the 5th and 9th nodes. 

 
The natural periods of the main structure are shown in Tab. 1. In this problem, we are 

interested in reduction of vertical responses of the main structure under horizontal ground 
acceleration, and corresponding mode shapes in vertical y-directions are illustrated in Fig. 3. 
The mode shapes are normalized to a maximum value of 1.0. Thus influence vector r  is 
given by a vector such that the element corresponding to a horizontal degree of freedom is 
one, otherwise zero; and velocity output matrix 1D  is zero matrix;  displacement output 
matrix 2D  is given by a matrix such that the element corresponding to a vertical degree of 
freedom is one, otherwise zero. Under such condition, we define transmissibility as the ratio 
of root sum square of output displacements to input ground acceleration , i.e., G   which 
is H  norm of the frequency response function matrix. Transmissibility of the main structure 
is shown in Fig. 4, the peak value of which is 8.88 m/(m/s2). From Tab. 1 and Fig. 4, we can 
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see that the second mode is dominant in vertical vibration and we may need to take the forth 
mode into account to reduce the vertical vibration. 
 
 

Table 1: Natural periods of  
the main structure 

 
 
 
 
 
 
 
 

Figure 3: Mode shapes in vertical y-directions 
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Figure 4: Frequency response function of the main structure 

4.2. Design of TMDs 

This model is symmetrical with respect to the y-axis, so that we also place TMDs 
symmetrically, e.g., we set same parameters to the TMDs at 5th and 9th nodes as shown in 
Fig. 2. Hence we only consider design of the left half side of the model as placement of 
attached TMDs; it is needless to say that TMDs of the other side is placed symmetrically. The 
placement of TMDs can be expressed by a multiset of number of nodes, which is denoted by 
 . Note that members of multiset are allowed to appear more than once because we allow 
overlapping placement of TMDs. Such approach is known as MTMD, the effectiveness and 
robustness of which have been also known. The number of TMDs are constrained to less than 
or equal 3. The conditions can be summarized as follows: 

  1,1,1,2,2,2 ,7,7,7, , 3,       (14) 

 Natural period [sec] 
1st 0.934 
2nd 0.789 
3rd 0.364 
4th 0.222 
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where  is the empty multiset, e.g., {5,5, 5}  is admissible. 
Total mass of TMDs are constrained to equal or less than 10% of the total mass of the main 

structure; and upper and lower bounds of the parameters are given, and then feasible set is 
given by  

  
4

6

6000 kg 13
10% 3900 kg;

2
1 kg 3,900 kg, ;( ) .

1 N/(m/s) 10 N/(m/s), ;

1 N/m 10 N/m

, , ;

,

:

j
j

j

j

j

j

j j

m

m j

c j

k

m c k j

j



                            





 









 (15) 

We redefine our design problem as 

  

Find

which minimizes to (
.

subjectto 1,

,

) :

,7,7,1,1,2,2,2, , 3,

(

7

)

g


   




  





G


 




  (9)’ 

By solving equation (12) for 0.99   , we obtain 1k   and 459n  . Thus we need 
459 samples to find a near-optimal solution for a given placement of TMDs. Under constraint 
(14) we can enumerate all possible  , i.e., combinations of the placement of TMDs and the 
number of all combinations is 119. Hence, we select the best design among 119×459=54,621 
samples, which means we evaluate equation (7) 54,621 times. We treat the design as a 
probabilistic optimum solution of problem (9)’ in a sense of (11). Furthermore, we try 10 
cases for verification because RS is probabilistic method. The results of 10 cases are 
summarized in Tab. 2, in the row of which labeled by ‘RS’ the peak values of transmissibility 
of the model with TMDs are shown. We can reduce the peak value by averagely 77% from 
the one of model without TMDs. 

 
Table 2: The peak values of transmissibility of the model with TMDs 

 
Case 1 2 3 4 5 6 7 
RS 1.98 2.06 2.01 2.01 2.00 1.99 2.02 
DS 1.86 1.74 1.84 1.87 1.91 1.96 1.88 

 
Case 8 9 10 best average SD 
RS 2.02 1.96 2.12 1.96 2.01 0.043 
DS 1.96 1.95 1.84 1.74 1.88 0.066 

 
 

We expect there are better local solutions near the solutions in Tab. 2 and hence we solve 
problem (9)’ again by local search method from start point of the solutions in Tab. 2. This 
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type of problem is known as nonsmooth problem, so that we use mesh adaptive direct search 
method (DS) [14], which is known as effective method for nonsmooth optimization [15]. The 
results are also summarized in the row labeled by ‘DS’ in Tab. 2. By the local search, we can 
obtain averagely 6.5% better solution in this example. The total best solution is  

 
2

2

4

4

4

2

123.7 kg, 3767 kg,

80.6 N/(m/s), 9138.8 N/(m/s),

3739.2 N/m, 189588 N/m.

m

k

c c

k

m

 


     

We allow overlapping placement of TMDs; however the total best solution is non-overlapping 
placement. Furthermore, the number of TMDs is only 2, i.e., total 4 TMDs attached to the 
structure. The natural periods are shown in Tab.3. Real part of the mode shapes in vertical y-
directions are illustrated in Fig. 5. The imaginary part of the modes are relatively smaller than 
the real part of the ones. In Fig. 6, the dashed line, red line and green line represent 
transmissibility without TMDs, the one with optimum TMDs and peak value with the 
optimum TMDs, respectively. 
 

Table 3: Natural periods of  
the model with TMDs 

 
 
 
 
 
 
 
 
 

Figure 5: Real part of mode shapes in vertical y-directions 
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Figure 6: Comparison of frequency response function 

 Natural period [sec] 
1st 1.144 
2nd 1.143 
3rd 0.945 
4th 0.934 
5th 0.886 
6th 0.740 
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From Tab.3, the 1st and 2nd natural periods, and the 3rd and 4th ones closely spaced. 
Furthermore, in Fig. 5, the 1st, 3rd and 6th mode shapes and the 2nd, 4th and 5th mode shapes 
are almost same. In Fig. 6, the three peaks have also almost same value. It is likely that 
closely spaced frequencies and correspondence of mode shapes cause small number of 
optimum TMDs because it needs to control a fewer number of modes. 
 

5. CONCLUSION 

To find an optimum design of TMDs for the vibration control of spatial structures, we 
proposed a probabilistic optimization method. We investigated the behavior of the method 
through a numerical example. The results are as follows: 

- We propose a new stopping rule of random search method based on order statistics. 
This approach can guarantee to find a near-optimal solution with pre-assigned 
accuracy in a sense of probability. 

- We consider an arch-frame model as a numerical example, in which the number of 
possible locations for TMDs is 13. By using the proposed methods, we can find 
design of TMDs which can reduce the peak response by averagely 77% from the one 
without TMDs. 

- By combining the method with local search method, we can obtain further better 
solution by averagely 6.5% than the one without local search method. 

- The best solution we found has closely spaced frequencies and correspondence of 
mode shapes, which cause small number of TMDs because it needs to control a fewer 
number of modes.  
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