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Abstract. The present paper is concerned with a numerical model that is developing to 

simulate dynamical processes in a heterogeneous two-phase medium consisting of two 

components – elastic-plastic porous solid and gas that occupies the domain in between of the 

solid. The scope of our interest is regimes of large deformations and intense loading-

unloading processes when the solid and the gas have different velocities and temperatures, 

i.e., are in dynamical and thermal non-equilibrium. Such a model needs to describe, for 

example, combustion and detonation in condensed porous explosives that are manufactured 

by pressing granular propellants.  
 

 

1 INTRODUCTION 

The model to be considered is an extension to the well-known model of Baer and Nunziato 

[1] for description of detonation in granular explosives. The medium in this model is treated 

as a two-phase continuum that consist of the solid granular skeleton of unreacted explosive 

and the gaseous product of combustion. Each phase of the mixture is characterized by its own 

vector of state parameters governed by the compressible Euler equations. 

The model we develop describes the behaviour of an elastic-plastic porous material (the 

solid phase) filled in by a gaseous component (the gas phase). The gas can flow through the 

porosity of the solid skeleton. The phases exchange mass, momentum, and energy due to 

combustion, interphase drag, and heat conduction.     

Porosity of the solid phase is defined by the gas volume fraction. Moreover, the solid phase 

is instantaneously characterized by the field of density, velocity, and stress tensor, the gas 

phase is done by own density, velocity, and pressure. We use the model of Prandtl and Reuss 

with the plastic flow rule given by the isotropic Von Mises yield condition to describe 

dynamics of the solid phase. Only minor modifications are done in this model to account for 

porosity. The gas phase is described by the compressible Euler equations.   
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The system of governing equations is closed by the kinetic equation for porosity which 

takes into account change in time of the gas volume fraction due to deformation and 

combustion of the solid skeleton.    

The resulting system of equations have no conservative form. Non-conservative terms 

appear because of gradient of the porosity, and are named in literature as nozzling terms by 

analogy with variable-area quasy-1D gas dynamics. A careful treatment is required for these 

terms when developing numerical methods [2].     

Many investigations have been undertaken to analyze mathematical properties of the 

Bayer-Nunziato equations, in particular with the aim of solving the Riemann problem and 

extending the Godunov method to two-phase hydrodynamics [2-5]. The model of elastic-

plastic two-phase flow is more complicated. For solving this model we implement the method 

of splitting that allows us to reduce the problem to more simple sub-problems. 

2    MATHEMATICAL MODEL AND NUMERICAL METHOD 

   We consider heterogeneous two-phase medium consisting of two components – elastic-

plastic porous solid and gas that occupies the domain in between of the solid. We use the 

continual approach where the medium is treated as a non-equilibrium two-velocity 

continuum. The gas phase is determined by time-depending spatial distributions of the 

volume fraction (the porosity)  , the density
0

1 , the pressure
1P , and the velocity vector 

),,( 321 uuuu 


. The solid phase is described by the solid volume fraction 1   , the 

density
0

2 , the velocity vector
1 2 3( , , )v v v v , the stress tensor )( ij  , and the strain 

tensor )( ij  . Here we assume an orthogonal Cartesian coordinates. 

 The system of governing equations represents fundamental laws of conservation of 

mass, momentum, and energy. As a baseline model we use the model of Nigmatulin [14] in 

the form of the Baer-Nunziato [1] equations extended to take into account elasto-plastic 

properties of the solid phase: 

                                                           i
n e

i

fq
H H

t x


  

 
                                                       (1) 

where 

 1 1 1 1 2 2 2 2, , , , ,
T

k kq u E v E       

is the vector of conservative variables,  

 1 1 1 1 1 1 2 2 2 2, , , , ,
T

i i i k ik i i i i k ik i ij jf u u u P u E Pu v v v v E v                

is the vector of flux in the i-th coordinate, 1, 2,3i  , 

 1 1 1 10, , ,0, ,
T

n k k k k k kH P Pv P Pv           

is the non-conservative term due to the gradient of the porosity, which is often referred to as 

the nozzling term since it is similar to that appears in the quasi-one-dimensional gas dynamics 

in channels with variable area, 

 2 2, , ( ), , ,
T

e k k j j k kH m g mv g v q m E Q m g mv mE           
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is the exchange term that describes mass, momentum, and energy transfer due to combustion 

of the solid phase, viscous friction, and heat transport between the phases. 

In the above equations, 
0 0

1 1 2 2,         are bulk densities of the phases,  

1 1 2 20.5 ,   0.5j j j jE e u u E e v v     are specific total energies, 1e  and 2e  are internal 

energies, m  is the mass transport rate due to combustion, ( )kg g  is the viscous drag force, 

q is the heat transfer due to difference in temperatures of the phases, and Q  is the heat 

released in the gas phase because of the solid phase burning.  

 The material of the solid phase is assumed isotropic, so that the material relations 

between stress and strain are given in the form of the generalised Hooke's law 

                                                            







 ijkkijijS 

3

1
2                                                  (2) 

where   is the shear modulus, and  ijSS   is the deviatoric stress tensor: 

2

1

3
ij ij kk ij ij ijS P         

 By taking material derivative of Eq.(2) and implementing the Jaumann derivative [7] 

                                                          jkikjkik

ijij

J

SS
dt

dS

dt

Sd
                                          (3) 

to satisfy frame-indifference requirement, the constitutive relations from Eqs.(2) and (3) can 

be written in the following form: 

2 2 / 3
ij

ik jk ik jk ij kk ij

dS
S S

dt
           

Here 
























i

j

j

i
ij

x

u

x

u

2

1
  is the spin tensor, 

1

2

ji
ij

j i

uu

x x


 
     

 is the strain rate tensor. 

 An additional yield condition is required to model elastic-to-plastic flow transition. 

The yield condition determines when the flow became plastic. In the present paper, we 

implement the von Mises yield condition which can be written as a restriction Wilkin's radial 

return imposed on deviatoric stress tensor: 

                                                  if 2

3

2
YSSQ ijij  , then 

Q

Y
SS ijij

3

2
                               (4) 

where Y  is the yield strength of the material in simple tension. 

 The yield condition (4) can be recast and introduced in the constitutive Eqs.(3). Let us 

introduce a parameter   and modify Eqs. (3) as follows: 

                                 2 2 / 3
ij

ik jk ik jk ij kk ij ij

dS
S S S

dt
                                         (5) 

 Direct consequence of these equations is an equation for Q : 

QW
dt

dQ


2

1
       with     2 ij ijW S   

The condition (4) is satisfied provided that the parameter  is assigned as  
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0 ,    if   2

3

1

2
Y

Q
 ,      and      

22

3

Y

W
 , otherwise. 

 Therefore, Eq. (5) will meet the yield condition (4) once  is determined as 

                                                             









322

3 2

2

YQ
H

Y

W
                                                   (6) 

The Eqs. (3) and (4) are equivalent to Eqs. (5) and (6), but the latter is more 

convenient in coding. Besides, the model of elastic-plastic solids easy converts to the model 

of hydrodynamics (the model of Baer and Nunziato) by simply defining the yield strength 

0Y  . 

 To complete the governing equations, we need also equation of states (EOS) that relate 

thermodynamical parameters such as density, pressure, internal energy, temperature, etc. We 

assume mechanical and thermal EOS in the following form: 0( , )k k k ke e P  and 

0( , )k k k ke e T  , k=1,2 for the gas and solid phase, respectively, where T denotes the 

temperature.  

 To closure the system of equations (1), (5), and (6), one needs to add an equation for 

the evolution of the porosity. In this paper we assume that the porosity is transferred with the 

solid phase dynamics and is also changed in time due to combustion and deformation of the 

solid phase. The corresponding equation takes the following form: 

0

2

j def

j

m
v

t x

 




 
  

 
,                                                             (7) 

where 
def  is the rate of change of the porosity due to deformation of the solid phase. In this 

paper we assume that this change of porosity occurs isotropically and depends on the 

difference in pressures, 
2 1def P P   in accordance with the model proposed in [15]:         











































 








 ln

3

2

4

ln
3

2

ln
3

2

4

ln
3

2

12

12

21

21

YPPH

YPP

YPPH

YPP

def
 , 

where   is the dynamical viscosity and H is the Heaviside function. The Eq. (7) can be recast 

in the conservative form as 

0 00
2 22 j def

j

v

t x

  




 

 
,                                                             (8) 

We also should modify the exchange term 
eH  in Eq. (1) to account for the work of change 

the gas volume due to deformation of the solid phase: 
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 2 1 2 1, , ( ) , , ,
T

e k k j j def k k defH m g mv g v q m E Q P m g mv mE P               

   Thus, the system of equations to be solved consists of equations (1), (5), (6), and (8) with 

the above modified 
eH  . 

The basic idea of the numerical method we develop lies on a general concept of 

splitting the governing equations in accordance with main processes [8, 9]. By using this 

approach, solving the problem can be reduced to more simple sub-problems without loss of 

fidelity. To do so, let us combine Eqs. (1), (5), (6), and (8) in a common conservative form   

                                                           k
n e m

k

q f
H H H

t x

 
   

 
                                           (9) 

by extending the state vector q


, corresponding flux vectors kf


, and the r.-h. s. vectors nH , 

eH : 

                                        0
2 2, ,

T
q q S  ;  0

2 2, ,
T

k k k kf f v Sv  ;                                 (10) 

                                            ,0,0
T

n nH H ; 

0
2

, ,0

T

def
e eH H

 



 
 
 
 

   

The vector mH


 in Eq.(9) represents the r.-h.s. of the constitutive equation (5): 

                                                  0,0, 2
T

mH S S Dev S                              (11) 

The dynamical process in the two-phase elasto-plastic porous medium can be thought 

of as the combination of two sub-processes [6]. One is hydrodynamic where the medium 

behaves like a two-phase fluid with the stress tensor assumed to be frozen (with no change) in 

the solid phase related Lagrangian particle. It is also assumed that no exchange process 

between the phases occurs at this stage. Another sub-process is considered as Lagrangian one. 

It goes in the medium on the frozen in time velocity fields and accounts for the change in time 

of the deviatoric stress S due gradients in the solid velocity field and the change of the state 

vector q


caused by the exchange term eH . This splitting is mathematically described by 2 

systems of equations: for the hydrodynamic part  
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                                                                k
n

k

q f
H

t x

 
 

 
,                                                      (11) 

and for the Lagrangian part  

                                                                   e m
q

H H
t


 


.                                                   (12) 

At the first, hydrodynamical, stage, we calculate an intermediate solution by solving 

Eqs. (11). This solution represents changes in the state vector due to  fluid dynamics factors 

providing that the deviatoric stress is carried by the media inalterably, simply as a Lagrangian 

characteristics. 

 In general, Eqs. (11) are solved with a moving grid that is adapted to the boundaries. 

We want to track, for example, contacts between different media, free boundaries, shock 

waves etc. At the second Lagrangian stage, this grid is frozen in time, and Eqs. (11) are 

integrated in each computational cell as a system of ODEs. Thus, updating the solution vector  

q


  from a discrete time level n to a new one n+1 is accomplished in the following two steps: 

                                 * 1 *

1 2,  ;              ,n nq L t q q L t q                                                  (13) 

In the present paper, 1L is the second-order accurate Godunov discrete operator with a 

MUSCL-type cell interpolation scheme [10] (extended to unstructured grids [11]). 

Let )(tGG   be a grid that discretizes the computational domain at the time t . The 

grid is in general unstructured, and consists of non-overlapping polyhedrals. We assume that 

the topology of the grid doesn’t change in time: the set of control volumes and the structure of 

cell links remain invariant. Then, the cell-centered control volume method applied to Eqs. 

(11) leads to a semi-discrete equations: 

                                    i i
k k k n

dV q
f f n qU S

dt





    
                                         (14) 

where the subscripts i  and   denote a computational cell and its face, respectively, iV

=Volume( i ) is the cell volume and S =Area( ) is the face area , 3,2,1, knk  are Cartesian 

components of the unit normal to the face directed outward the cell. 

 The additional flux kf  in Eq. (14) takes into account the non-conservative nozzling 

term nH . The Godunov method assumes continuity of all flow parameters inside each 

computational cell. For the first order scheme, these are just constant. Therefore the porosity 
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at the beginning of the time step may have discontinuity only across the cell face. Next time 

moments, this discontinuity moves with the material velocity of the solid phase, and is found 

to be just inside the cell. To treat nH  in the finite volume method discretization, the 

integration over the whole cell is represented by the integrations over two sub-domains 

separated with the surface of porosity discontinuity. In the case of the first order scheme this 

results in Eq. (14), and the additional flux  kf  takes the following form: 

, , ,   0

0,  

c c c

k k n
k

f f if v
f

otherwise


   
 


,                                           (15)                   

where 
c

kf  is the flux at the surface of porosity discontinuity, the superscript “+” and “-“ 

indicates the outer and inner side of this surface with respect to the outward normal n , and c

nv  

is the normal component of its velocity. Note, that for the second order scheme we have to 

write in the left-hand side of Eq. (14) an approximation of the cell integral of nH . Taking into 

account that n k kH h     this may be done as  

   n k i k
i

i

H dV h n S




 ,                                            (16) 

where i
  is the MUSCL-interpolated -face value of the porosity in the i-th cell.   

In Eq.(14),  nUUn


,  is the normal component of the face velocity. In practice, 

movement of the grid is determined by velocities of node points (vertices) which are 

calculated based on the data how the tracked surfaces is displaced. The face velocity is then 

defined so that the geometrical conservation law is satisfied: 

                                                               
,

i
n

dV
U S

dt
 



                                                        (17) 

This can be realized in different ways. In particular, we can choose this velocity as 

                                                               
tS

V
U n









 ˆ,                                                              (18) 

where      tttVolumeV   ,  is the volume that the face   sweeps as the cell  ti  

goes to the position  tti  , and     tttAverS   ,ˆ  is an average position of the face 
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(e.g., arithmetic averaging). Such a choice guaranties the validity of geometrical conservation 

law at the discrete level: 

                                                          


 SUttVttV nii
ˆ

,
                                        (19) 

Letting  321 ,, kkkk 


 and  321 ,, llll 


 be unit vectors tangential to the face   such 

that kn


, , and l


form an orthonormal basis in 3R , the r.-h.s. of Eq. (14) can be written using  

one flux vector F


 

                       1

k k k n nf f n qU T F F QU      ;  qTQ


                                  (20) 

where T  is the matrix of transformation from the absolute Cartesian coordinates to 

localcoordinates in the basis , ,n k l .   

The flux vector  QFF


  is given by  

 

 SuuuuEuuuuuuuF nlnlknknnnnnllnnkknnnnn  ;;;;;
2




 

 

where the subscript n  means normal, and k , l   tangential coordinates, respectively: 
iia auu  ; 

jiijab ba   with a  and b  taking lkn ,, . Therefore, F  can be thought of as a local  one-

dimensional flux of mass, momentum, energy and deviatoric stress in the normal to the face 

direction.  

Thus, the semi-discrete form of the hydrodynamic part is written as  

                                                      1i idV q
T Ф S

dt
  



                                                         (21) 

where nФ F F U Q   .  

 The vector-function Ф


 is referred to as numerical flux. Known well in numerical 

methods for hydrodynamics, it is considered as a function that depends on state parameters at 

the cell interface 

                                                           
  ,i i

Ф Ф Q Q 


                                                       (22) 

where  i  denotes the cell adjoined the i -cell by the face  , and the superscript  indicates 

the cell interface value. In this paper we employ the Godunov method that treats the 

numerical flux by means of the solution to the cell interface Riemann problem. Details of this 

approach we discuss in the next section.      

 The option of choosing the  -values in Eq. (22) is related to the accuracy of the 

scheme. For the first order scheme we just set i iQ Q  .  To increase the accuracy, we follow 

the MUSCL approach [12], which defines the  - value as  
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                                                        n

kkk

n qtAIrTQQ


 5.0
                                     (23) 

where r


 is the radius-vector from the cell center to the face center, 
q

A k
k








f

  is the flux 

Jacobian, 
k  is the operator of limited derivative, which satisfies   iiikk Cr  

  ,  with 

5.00  c  [13] . 

The explicit time marching scheme for Eq. (14) results in a first or second order 

accurate discretization depending on the choice of  -values,  

                                 
1 1

1

1n n n

i i in

i

q V q t T Ф S
V

  


 



 
  

 
                                       (24) 

providing that the time step is calculated in accordance with the CFL stability condition  

 n i
i Ф

V
q

S 








,   min n

i
i

t q  
 

,   where Ф  is the spectral radius of the Jacobian 

Q
Ф 



 . 

 Once an intermediate solution *q


of the hydrodynamic sub-problem is obtained, we 

then use it as initial data to integrate the Lagrangian stage given by Eq.(12). 

 In these equations, the vector q


 is prescribed to cell centers of the grid at the upper 

time level 1nt ; the grid itself is assumed to be frozen in the curse of time. The derivatives in 

mH


 (Eq. (11)) are approximated by the least square method.  

 To integrate the resulting system of ODE we use a 2 stage Runge-Kutta explicit 

scheme: 

     * * * *
e mq q t H q H q    

  
 ;           1 * * * *0.5n

e mq q q t H q H q      
  

      (25) 

A common value of t  for the hydrodynamic and Lagrangian stages is chosen in 

accordance with the CFL stability condition (24). Some restriction on t  is also imposed by 

of the Lagrangian stage. At each time step we check t  to satisfy the following inequality: 

  ** qqHt m


   with 1.0~01.0 . 

 

3 NUMERICAL FLUX APPROXIMATION  

The calculation of the numerical flux Ф


 introduced in the previous section is carried 

out in the framework of the Godunov method with implementing the solution to the Riemann 

problem. With this aim, we first reduce the system of equations (11) to the 1D case for the 

direction x determined by the outward normal to the cell face (x=0), and consider the initial 

value Riemann problem with initial conditions ( ,0) lQ x Q , if 0x  , and ( ,0) rQ x Q ,  if 

0x  . The solution to this Riemann problem has been studied in [2] for the particular case of 

stiffened gas EOS. We can consider this solution to be known. The calculation of the 

numerical flux follows the usual course.  
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Let us denote the Riemann problem solution as  , ,R R

l rQ Q Q Q , where /x t   is 

the self-similar variable. Then, the numerical flux at the cell interface   is determined in the 

following way: 

       
     
 

, , ,   if  0

,   

c c
n c

n

Ф F Q F Q F Q U Q V

Ф F Q U Q otherwise

    

  

     

 
                               (26) 

where the arguments of the flux function are calculated from the Riemann problem solution as 

follows: 

                                                    

 

 

 

( )

,
( )

,
( )

0, , ,

0, , ,

0, , .

R
n i i

c R
c i i

c R
c i i

Q Q U Q Q

Q Q V Q Q

Q Q V Q Q

 
 

 
 

 
 





 

 

 

                                          (27) 

Here 
cV  is the normal velocity of the solid contact which separates regions with different 

values of the porosity, 
i  and 

( )i . This solution is found in the process of solving the 

Riemann problem. Details can be found in [2]. 

4 NUMERICAL RESULTS 

Here we show very preliminary results of calculations with the discrete model discussed in 

previous sections. In these calculations we use a reduced model where the exchange term eH
 
   

(except for 
def ) is not taken into account. As a test we consider the impact problem in the 

one-dimensional approximation. 

We simulate impact of a porous and solid (with no pores) material with the absolutely rigid 

wall. Initial values of parameters are chosen as 30

1 /3125.1 smg , PaP 9

1 10 , 

smu /1001  , 0.75  , 30

2 /4375.0 smg , PaP 9

2 10 , smv /1001  , 25.0 , 

GPaY 5.0 , sec100  Pa . A uniform grid consisting of 500 intervals is used. The left 

boundary of the computational domain corresponds to the rigid wall boundary conditions.  

Figure 1 shows the difference in the wave structure that appears in the solid and porous 

material. In the right row figures we plot in black also the distribution of gas parameters in the 

case of pure gas impact (a piston problem). One can see the formation of the solid contact 

with a gap in the volume fraction. Behind this contact the pores volume fraction decreases, the 

gas is compressed and flows away from the wall. This results in additional contraction of 

pores near the wall with formation of the secondary contact wave.   

Unloading process is presented in Figure 2. In this calculations the initial gas and solid 

velocity are directed away from the wall,  1 1 100 /u v m s  . Tension of the material results in 

growing of pores, and the solid volume fraction is decreased. Comparison with the pure gas 

case is given in the right row figures. One can see the formation of two rarefaction waves in 

the gas phase in contrast to the pure gasdynamic case.  
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Figure 1: Impact problem. Flow parameters for  t=0.25 ms: solid medium (black), porous medium (blue).   

  
Figure 2: Impact problem. Flow parameters for  t=0.25 ms: solid medium (black), porous medium (blue).   
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5 CONCLUSIONS 

- A numerical model has been developed for elasto-plastic porous solid and gas 

dynamics, which can be considered as the extension to the two-phase 

hydrodynamical model of Baer-Nunziato. 

- The Godunov method has been generalized for the system of governing equations of 

elastic-plastic two-phase flow. A novel treatment of non-conservative (nozzling) 

terms has been proposed which has the straightforward implementation in the 

multidimensional case.    
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