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Abstract. We use a two-fluid (plasma + neutrals) model to simulate the magnetic re-
connection in chromospheric conditions. Improved models for characterizing collisional
and reactive magnetized partially ionized plasma in the presence of electromagnetic fields
are essential to understand the phenomena taking place in astrophysical and labora-
tory plasmas. Particularly, scenarios where dissipative processes and thermo-chemical
non-equilibrium play an important role are beyond the classical single-fluid MHD rep-
resentation. The governing equations of the multi-fluid model used include two loosely-
coupled systems: the reactive two-fluid equations and the full Maxwell equations com-
plemented with two additional divergence cleaning equations for enforcing numerically
the two Gauss’s laws. A second-order cell-centered Finite Volume method for unstruc-
tured grids is used to discretize both systems. In particular, a variant of the AUSM+-up
scheme is used to tackle the two-fluid equations, while Steger-Warming scheme is chosen
for treating Maxwell equations. The unsteady simulation is advanced in time with an
implicit three-point Backward Euler scheme. Results of the reconnection process are pre-
sented showing clear differences in the velocities and path of the neutrals compared to the
ions that respond to the effect of the electromagnetic fields. Also shown are the different
evolutions of the density of neutrals and ions that interact through chemical reactions.
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1 INTRODUCTION

The study of plasma in the presence of electromagnetic fields offers potential devel-
opments in areas like astrophysics, laboratory plasmas, hypersonic reentry vehicle design
or propulsion. The governing equations describing ionized flows in presence of strong
electromagnetic fields are Navier-Stokes coupled with Maxwell equations. This set leads
to a stiff system, difficult to solve since it comprises characteristic speeds spanning from
the speed of light to the speed of sound. Including the time dependent term of Maxwells
equations allows considering as well the high frequency changes of the electromagnetic
field induced by the movement of the conducting flow. Usually, the single-fluid MHD
models assume this changes to be negligible, adding thus some degree of uncertainty [9].

Another limitation of the standard single-fluid MHD models is observed when studying
scenarios of finite conductivity where dissipative effects are important. Particularly, mag-
netic reconnection is a diffusion driven process in which those models have shown strong
disagreement with experimental and observational data. However, it is a phenomenon of
significant interest since it has since long been considered as a mechanism for creating
transient phenomena in magnetized plasma. It occurs when oppositely directed magnetic
field lines in conducting plasma merge due to diffusive processes producing a change of
topology. The rearrangement of magnetic field lines produces a change of the magnetic
flux that creates a current sheet due to the finite conductivity. In addition, the recon-
nection process causes a conversion of magnetic energy into kinetic and thermal energy,
heating up the flow and accelerating it to very high speed in very small timescales.

There are a wide variety of astrophysical scenarios in which the magnetic reconnection
plays an important role. It is considered to be a likely mechanism that heats the corona
to a few million degrees, still one of the biggest unsolved mysteries in heliophysics [10].
Also, in coronal mass ejections (CMEs) and solar flares it is considered as a triggering
mechanism which is present during the onset and early stages of the ejection [11]. In the
Earths magnetosphere it is said to produce the plasma outflow at the magnetotail that
is driven by the Earths magnetic field into the atmosphere producing the aurora borealis
and geomagnetically induced currents (GICs) [12].

In the present work, we will focus on studying the magnetic reconnection in the Sun
chromosphere, following the work presented in [1]. Observational data [8] have unveiled
that the magnetic reconnection is the driver mechanism for chromospheric jets and the
spicules. The former can have timescales of 200-1000 s and current sheet length scales up
to 5 Mm, producing outflows of 10 km/s. On the other hand, the spicules are smaller but
faster phenomena, that last 10-600 s in length scales up to 1 Mm causing outflows up to
20-150 km/s [1].

The present ongoing research is targeted towards the development of consistent and
effective models of magnetic reconnection by considering multi-fluid models and account-
ing for the influence of the electromagnetic fields. The improvement of the magnetic
reconnection modeling would have a direct impact on our ability to model CMEs.
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2 MODELING OF THE MAGNETIC RECONNECTION

Magnetic reconnection is a process that happens as a result of a diffusive mechanism
that produces a decay in the electrical conductivity of the plasma. The frozen-in constrain
that holds in ideal plasmas (with infinite conductivity) is broken in a small region of width
δ and length L. In this region, the magnetic field lines reconnect producing a rate of
magnetic flux that results in the formation of a current sheet. Thus, the non-dimensional
magnetic reconnection rate is defined [13] as follows:

M =
dΦ/dt

vABi

(1)

where Φ is the magnetic flux per unit length in the direction perpendicular to the
plane containing the current sheet , vA is the Alfven speed and Bi is the magnetic field
evaluated upstream of the current sheet.

Therefore, classical ideal MHD equations assuming the conductivity to be infinite are
not able to tackle the physics involved in the reconnection. Nevertheless, the resistive
singlefluid theory has developed analytical models for 2D steady magnetic reconnection.
The Sweet-Parker model [14] proposes a non-dimensional reconnection rate of the form:

M = R−1/2
m (2)

where

Rm = vAL/η (3)

is called the Lundquist number, and η is the resistivity.
However, the model is unable to explain the fast energy released by the solar flares or in

chromospheric jets and spicules, providing reconnection rates several orders of magnitude
smaller.

On the other hand, the Petschek model [15] predicts faster reconnections suggesting
geometry different from the Sweet-Parker one, Eq. 4. However, the model assumes explic-
itly or tacitly that resistivity gives the configuration setup. Because of this controversial
issue, the Petschek model has been gradually rejected [16].

M =
π

8 ln(Rm)
(4)

Therefore, it is necessary to consider alternative theories to model the reconnection.
Multi-fluid models consider each particle species as a different fluid that interact with each
other by means of collisions and chemical reactions, exchanging thus mass, momentum
and energy in their interplay. Therefore, since the width of the diffusion region can be
comparable to the ion scales [12], the multi-fluid description are considered to capture
diffusive effects that are completely neglected by the single-fluid theory.
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In the literature, one can find several fluid closures accounting for the different be-
havior of the species of plasmas in presence of electromagnetic fields. Braginskii [17]
derives a two-fluid formulation considering separate ions and electrons. In his seminal
work, he proposes closures for the transport properties, accounting for the anisotropy in-
troduced by the magnetic field. Similarly, Magin [18] proposes a multi-component model
separating heavy particles and electrons, treating the effect of the magnetic field on the
transport properties. Most recently, Meier [2] has proposed a two-fluid model considering
the charged particles and neutrals as separate fluids, considering both anisotropic effects
in the plasma heat conduction due to the magnetic field and chemical reactions (ionization
and recombination).

3 GOVERNING EQUATIONS

The multi-fluid description used in the results shown hereafter is the model discussed
in [2]. The latter is a two-fluid model that considers separately neutrals and charged
species, i.e. hydrogen ions and electrons. The full set of equations considered comprises
mass, momentum and total energy conservation for both fluids. The chemical reactions
considered are electron impact ionization and radiative recombination. The excited states
are not tracked, only an effective potential is assumed φion for the ionization reaction. The
plasma is assumed to be optically thin, so the radiation effects are completely lost from
the system. Electrons are considered to be in thermal equilibrium with ions, allowing
neutrals to be in non-LTE. Charge neutrality is assumed and the electrons inertia and
viscosity is neglected. This simplifications yields the following system:

∂ρi
∂t

+∇ · (ρi~vi) = mi(Γ
ion
i + Γreci ), (5)

∂ρn
∂t

+∇ · (ρn~vn) = mn(Γionn + Γrecn ), (6)

∂ρi~vi
∂t

+∇ · (ρi~vi~vi + pi
~~δ + pe

~~δ) = −∇ · (πi) +~j × ~B + ~Rin
i + Γioni mi~vn − Γrecn mi~vi, (7)

∂ρn~vn
∂t

+∇ · (ρn~vn~vn + pn
~~δ) = −∇ · (πn)− ~Rin

i − Γioni mi~vn + Γrecn mi~vi, (8)

∂

∂t

(
εi +

pe
γe − 1

)
+∇ · (εi~vi +

γepe
γe − 1

~vi + pi~vi) = −∇ · (~vi · πi + ~qi + ~qe) +~j · ~E + ~vi ~R
in
i

+Qin
i − Γrecn

1

2
miv

2
i −Qrec

n + Γioni

(
1

2
miv

2
n − φion

)
+Qion

i ,

(9)
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∂εn
∂t

+∇ · (εn~vn + ~vnpn) = −∇ · (~vn · πn + ~qn)− ~vn ~Rin
i +Qin

n + Γrecn
1

2
miv

2
i +Qrec

n

−Γioni
1

2
miv

2
n −Qion

i (10)

Where the subindices i, e, n stand for ions, electrons and neutrals. The electrical current
follows Ohm’s law ~E + ~vi × ~B = η~j with the resistivity η assumed to be constant. The
reaction rates Γion and Γrec and the reaction energy production Qion and Qrec are taken
from [24] and [25]. The momentum and energy collisional terms ~Rαβ

α and Qαβ
α considered

are discussed in [1]. Ions and neutrals viscosity stress tensor are assumed to be Newtonian,
with constant viscosity. Neutrals heat conduction follows Fouriers law with constant
thermal conductivity, whereas ions have anisotropic heat flux accounting for the effect of
the magnetic field, described in [17]. The fluid are assumed to be perfect gases with a
constant γ = 5/3.

The electromagnetic influence is tackled with the Maxwell equations:

∂ ~B

∂t
+∇× ~E = 0 (11)

∂ ~E

∂t
− c2∇× ~B = −

~j

ε0
(12)

∇ · ~B = 0 (13)

∇ · ~E =
ρc
ε0

(14)

where ρc is the charge density that is assumed to be zero.

4 NUMERICAL MODELING

4.1 Finite Volume Method

Our numerical results have been obtained using the Finite Volume (FV) solver for
unstructured grids provided by the COOLFluiD platform [5, 6, 19, 7]. The governing
equations are written in conservative form, as follows:

d

dt

∫
Ωi

U dΩ +

∮
∂Ωi

Fc · n dΣ =

∮
∂Ωi

Fd · n dΣ +

∫
Ωi

S dΩ (15)

The conservative form of Maxwell equations is found in [9]. The cell-centered FV
discretization applies the integral conservation law to each cell, assuming the solution to
be constant over the cell and storing the value at the centroid of the cell. In order to obtain
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second-order accuracy in space, inverse-distance weighted least square reconstruction [20]
is used. The multidimensional limiter of Venkatakhrisnan [21] is used to obtain oscillation
free solutions. The discretization of the inviscid fluxes is explained section 4.3.

4.2 Hyperbolic divergence cleaning for Maxwell equations

One of the biggest concerns in the development of a Maxwell solver is to satisfy the two
divergence constrains Eq. 13 and Eq. 14 on the discrete level. The hyperbolic divergence
cleaning method [3] is a proven efficient way to enforce the constrains in Finite Volume
solvers. Two lagrange multipliers φ and ψ are added in Maxwell equations as follows:

∂ ~B

∂t
+∇× ~E + γ2∇Ψ = 0 (16)

∂ ~E

∂t
− c2∇× ~B + χ2c2∇Φ = −

~j

ε0
(17)

∂Ψ

∂t
+ c2∇ · ~B = 0 (18)

∂Φ

∂t
+∇ · ~E =

ρc
ε0

(19)

Artificial waves are introduced at speeds γc and χc that remove the errors in the
fulfillment of the constrains.

4.3 Steger-Warming scheme for Maxwell equations

The Steger-Warming scheme [22] splits the flux at the interface into positive and neg-
ative components based on the eigenvalue structure of the system as follows:

Fc = A+UL + A−UR (20)

where

A =
∂Fc

∂U
= A− + A+ and A± = RΛ±R−1 (21)

R is the matrix of right eigenvectors, Λ± the diagonal matrix of diagonal matrices
with the positive and negative eigenvalues, U are the conservative variables. In the
hyperbolic divergence cleaning Maxwell system U = (Bx, By, Bz, Ex, Ey, Ez,Ψ,Φ) and
the eigenvalues are λ = c, c,−c,−c, χc,−χc, γc,−γc. The details of the discretization
including the divergence cleaning method are discussed in [3]. The method is shown to
work standalone and coupled with Navier-Stokes equations of a single conducting fluid
[23].
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4.4 AUSM scheme for fluid equations

In the results shown hereafter, the inviscid flux of the multi-fluid Navier-Stokes is
discretized using the AUSM+-up scheme. This method, discussed in [4] is originally
designed for single-fluid and in this work it is adapted for multi-fluid. The scheme splits
the inviscid flux of each fluid at the cell interface into the convective part and the pressure
flux as follows:

Fc
s = Fconv

s + Ps = ṁsΨs + Ps (22)

The subindex s = i, n denotes the fluid considered, i.e. ions or neutrals for the model
discussed in the previous section. ṁs is the mass flux of the species s, Ψs is a vector with
the convected variables and Ps is the pressure flux. The latter can be expressed as:

ṁs = ρsqs, Ψ = (1, u, h)s, Ps = (0, psn, 0) (23)

where qs = u · n is the velocity of the fluid s projected onto the normal n of the
considered cell interface.

The numerical discretization of the flux Fc
s at the interface between the left (L) and

right (R) states is defined as:

Fc
s1/2

= ṁs1/2Ψ
L/R
s + Ps1/2 (24)

Simple upwinding is applied to define Ψ
L/R
s :

Ψ =

{
(1, u, h)Ls if ṁs1/2 > 0

(1, u, h)Rs otherwise
(25)

The methods to compute the numerical mass flux ṁs1/2 and the pressure Ps1/2 at the
cell interface used in this work are discussed in [4].

4.5 Implicit time stepping

The resulting set of equations is a very stiff system since it has characteristic speeds
ranging from the speed of sound of the different fluids to the speed of light. In order
to deal with the strong time step requirements, implicit time stepping is applied. The
second-order accurate three-point Backward Euler is used:

3

2
Un+1 − 2Un +

1

2
Un−1 = ∆t Rn+1 (26)
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Figure 1: Evolution of the current sheet in the first seconds of simulation. Evolution of magnetic field
lines and z-component of the electric current non-dimensionalized with its maximum value JzMAX

=
0.9475 A/m2. Top: from left to right, t = 0 s and t = 5 s. Bottom: from left to right, t = 10 s and t = 20
s.

5 RESULTS

The above mentioned model and numerical method are applied to investigate a re-
connection scenario under chromospheric conditions. The computational domain extends
from −5 × 104 m to 5 × 104 m in the x direction and −5 × 103 m to 5 × 103 m in the
y direction. Periodic boundary conditions are used in the x-direction and perfectly con-
ducting boundaries in the y-direction. The simulation domain is divided into 182000 cells
(1400 × 130). The mesh stretches in the center, where the reconnection takes place, up
to sizes of the order of one meter, comparable to the neutral-ion collision mean free path.

The initial conditions are chosen to be similar to chromospheric conditions estimated
in the 1D model of the Sun [26]. The initial ion number density is n0 = 3.3 × 1016m−3

and the initial ionization level ni/(ni + nn) = 0.5%. The magnitude of the initial mag-
netic field is set to 10−3T with oppositely directed fields in the x-component as follows:
Bx = −1×10−3 tanh(y/5000) T. The Spitzer resistivity is η = 3.82×10−3 Ωm.The temper-
ature is set at 8750 K with a profile imposed to create a pressure that balances the initial
Lorentz force T ′i (y) = 4366.49/ cosh2(y/5000) K and T ′n(y) = 5443.43/ cosh2(y/5000)
K. All the components of the velocity are set to zero. This creates a balanced ini-
tial condition that is perturbed with a small ions velocity in the vertical direction:
vi(y) = 20.1 tanh(y/5000)/ cosh2(y/5000) m/s and a small perturbation in the mag-
netic field around the center to initiate a reconnection at the center of the domain:
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B′x = 8× 10−9ye−(x/20000)2−(y/5000)2 T and B′y = −5× 10−10xe−(x/20000)2−(y/5000)2 T.
In figure 1, the evolution of the current sheet and the magnetic field lines are shown.

As can be seen, the magnetic lines change topology forming a current sheet in the center
of the domain. The current width, δ , is defined to be the half-width at half-max of
the current sheet. It is measured to be δ = 161 m at t = 20 s. This value is of the
same order of magnitude of the neutral-ion collision mean free path at this conditions
Lni = vT,n/νn,i = 140 m [1]. For all intensive purposes, the magnetic field has reconnected.

In figure 2, we compare the horizontal velocity of ions and neutrals. Since the geometry
is symmetric, the ions are shown on the right and the neutrals on the left without loosing
information. The neutrals are unaffected by the electromagnetic fields, however, the ions,
that are accelerated by the Lorentz force driven by the current sheet, drag the neutrals
through collisions. As can be seen, the horizontal velocity of ions and neutrals is very
similar.

 

Figure 2: Horizontal velocity of neutrals and ions at t = 20 s. Non-dimensionalized with the value of
the local Alfven speed outside the current sheet

.

However, in figure 3, we show that the vertical velocities and the streamtraces of ions
and neutrals are clearly different. The maximum vertical velocity of the neutrals is shown
to be 38.5% of the vertical velocity of the ions. This difference has a direct impact on the
streamtraces, as shown in the bottom part of figure 3.

In figure 4 the densities of ions and neutrals are shown. The density of the ions change
drastically from the initial field due to chemical reactions and also due to the compression
produced by the electromagnetic forces.

6 CONCLUSIONS

The goal of the present research is to develop the numerical tools required to simulate
the magnetic reconnection process with models that are able to overcome the limitations
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Figure 3: Vertical velocity and streamtraces of neutrals and ions at t = 20 s.

.

 

Figure 4: Density of neutrals and ions at t = 20 s. The values are non-dimensionalized with the initial
values.

.

associated to standard single-fluid MHD models. Numerical algorithms for solving a
multi-fluid model, considering charged particles and neutrals, coupled with full set of
Maxwell equations have been presented in this work.

The FV method is applied to simulate a magnetic reconnection scenario with chromo-
spheric conditions. Full set of Maxwell equations is considered, without neglecting the
variation of the electric field in time that introduces electromagnetic fields. Hyperbolic
divergence cleaning method is used to enforce the solenoidal constrains. For the fluids,
AUSM+-up method is implemented. In order to allow larger time steps, implicit second
order time stepping is applied.

10



A. Alvarez Laguna, A. Lani, N. Mansour, A. Kosovichev, S. Poedts

The results presented herein show how the magnetic field lines reconnect and a current
sheet is created as a consequence of a small perturbation on an initial oppositely directed
magnetic field with finite electrical resistivity of the charged fluid. We find that the
electromagnetic forces accelerate the ions that drag the neutrals. The simulations show
separation between the ions and neutrals vertical velocity due to the fact that the current
sheet width is comparable to the neutral-ion collision mean free path. They also show
how the densities of ions and neutrals evolve differently as a consequence of the chemical
reactions and the electromagnetic forces.
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