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E. Oñate, J. Oliver and A. Huerta (Eds)

TWO LEVEL FETI METHOD FOR TRANSIENT
PROBLEMS
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Abstract. In this paper we deal with a variant of FETI (Finite Element Tearing and
Interconnecting) domain decomposition method for transient problems of linear elasticity.
The basic idea of this method is based on the standard FETI-DP approach, but the
implementation is more close to classical FETI/TFETI method. This method can be
viewed as two level FETI method. The effective stiffness matrices are assembled for
floating subdomains and the continuity of the solution across the interfaces is enforced
by two sets of Lagrange multipliers. The first set enforces the continuity at the “corner”
nodes. The continuity on the rest of the interface is obtained within the iteration process
as in standard approach. The behavior of the proposed method is demonstrated on
academic benchmark implemented within the MatSol library.

1 INTRODUCTION

The goal of this paper is to describe a variant of FETI method based on our variant
of the FETI type domain decomposition method called Total FETI [3]. The original
FETI method, also called FETI-1 method, was introduced by Farhat and Roux [5]. In
both methods a body is decomposed into several non-overlapping subdomains and the
continuity between the subdomains is prescribed by gluing conditions and enforced by
Lagrange multipliers. Using a theory of duality, a smaller and relatively well conditioned
dual problem can be derived and efficiently solved by suitable variant of the conjugate
gradient algorithm. In Total FETI method [3] also the Dirichlet boundary conditions are
enforced by Lagrange multipliers.

Another variant of FETI is the FETI-DP method, where the continuity of the solu-
tion along the subdomain interfaces is enforced by Lagrange multipliers except for the
subdomain corners, which remain primal variables. The FETI-DP method was originally
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introduced by Farhat, Lesoinne, Le Tallec, Pierson, and Rixen [6] and analyzed for scalar
two dimensional problems by Mandel and Tezaur [7].

Here we describe Total FETI-DP method, which can be viewed as 2 level Total FETI.
As for TFETI a body is decomposed into several non-overlapping subdomains and the
continuity between the subdomains and the Dirichlet boundary condition are enforced
by two sets of Lagrange multipliers. The first set enforces the continuity at the “corner”
nodes. The continuity on the rest of the interface is obtained within the iteration process
as in standard approach.

The paper is organized as follows. After introducing a transient problem of linear
elasticity and its domain decomposition in Section 2, we describe discretization for space
and time domains in Section 3. In Section 4 we present Total FETI-DP method. The
results of numerical experiments are illustrated in Section 5.

2 TRANSIENT PROBLEM AND DOMAIN DECOMPOSITION

Let us consider homogeneous isotropic elastic body, which occupies, in a reference con-
figuration, a domain Ω in R

d, d = 2, 3, with a sufficiently smooth boundary Γ. Suppose
that Γ consists of two disjoint parts ΓU and ΓF , Γ = ΓU ∪ΓF , and consider zero displace-
ments on ΓU and given forces F : ΓF → R

d on ΓF , see Figure 1. We admit ΓU = ∅, but we
assume for simplicity that Γ is sufficiently smooth so that for almost every x ∈ Γ, there
is a unique external normal n = n(x).

g
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FГ
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Figure 1: Model problem

The mechanical properties of Ω are defined by the Young modulus E, the Poisson ratio
ν, and the density ρ. The Young modulus and the Poisson ratio define the entries of
the elasticity tensor cijkl : Ω → R

d, while the density defines the inertia forces and the
vector of body forces g : Ω → R

d. Since we assume that the body is homogeneous, the
mechanical properties of the body are independent of x.

Under the assumption of linear elasticity and using the summation convention, the
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stress tensor σ (u) is given by

σij (u) = cijklekl (u) ,

where

eij (u) =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

. (1)

The conditions that should be satisfied by the displacements u : Ω× 〈0, T 〉 → R
d, T > 0

are

ρü− div σ (u) = g in Ω ×〈0, T 〉 , (2)

u = o on ΓU×〈0, T 〉 , (3)

σ (u)n = F on ΓF×〈0, T 〉 , (4)

u (., 0) = u0 in Ω, (5)

u̇ (., 0) = u̇0 in Ω, (6)

with the Newton equation of motion (2), the classical boundary conditions (3) and (4),
and the initial values (5) and (6).

Let V =
{

v ∈ (H1 (Ω))d : v = o on ΓU

}

be a space with the test functions. Then the
weak formulation is: for almost every time τ , find u( · , τ) ∈ V such that

m (ü,v) + a (u,v) = (f ,v) , v ∈ V , (7)

(u (·, 0) ,v) = (u0,v) , v ∈ V , (8)

(u̇ (·, 0) ,v) = (u̇0,v) , v ∈ V , (9)

with the definitions

m (ü,v) =

∫

Ω

̺ü · vdΩ,

a (u,v) =

∫

Ω

cijkleij (u) ekl (v) dΩ,

(f ,v) =

∫

Ω

g · vdΩ +

∫

ΓF

F · vdΓ.

To apply the TFETI domain decomposition, we tear the body from the part of the
boundary with the Dirichlet boundary condition, decompose the domain Ω into s subdo-
mains Ωp, assign each subdomain a unique number, and introduce new “gluing” conditions
on the artificial intersubdomain boundaries and on the boundaries with imposed Dirichlet
conditions. For the artificial intersubdomain boundaries, we introduce this notation. Γpq

G

denotes the part of Γ that is glued to Ωq and ΓG denotes the part of Γ that is glued to
the other subdomains. Obviously Γpq

G = Γqp
G . An auxiliary decomposition of the problem

of Figure 1 with artificial intersubdomain boundaries is in Figure 2. The gluing condi-
tions require continuity of the displacements and of their normal derivatives across the
intersubdomain boundaries. The procedure is the same as that for the static problem [4].
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Figure 2: Domain decomposition

3 DISCRETIZATION

We use the finite element discretization in space to get the matrix counterpart of (7)–
(9) at the time τ

Mü+Ku = f −BTλ, (10)

Bu = c = o, (11)

λT (Bu− c) = 0. (12)

Due to the TFETI domain decomposition, the finite element semi-discretization in
space of the domain Ω, results in the block diagonal stiffness matrixK = diag (K1, . . . ,Ks)
of the order n with the sparse positive semidefinite diagonal blocks Kp that correspond
to the subdomains Ωp. The same structure has a positive definite mass matrix M =
diag (M1, . . . ,Ms). The decomposition induces also the block structure of the vector of
nodal forces f = fτ ∈ R

n at time τ and the vector of nodal displacements u = uτ ∈ R
n at

time τ .
The matrix B ∈ R

m×n with the rows bi and the vector c ∈ R
m with the entries ci = 0

enforce the prescribed zero displacements on the part of the boundary with imposed
Dirichlet condition and the continuity of the displacements across the auxiliary interfaces.
The continuity requires that biu = ci = 0, where bi are vectors of the order n with zero
entries except 1 and −1 at appropriate positions. In our implementation we assembled the
matrix B in the orthogonal form. Typically m is much smaller than n. Finally, λ ∈ R

m

denote the vector of Lagrange multipliers λ = λτ ∈ R
m, at time τ .

For the time discretization, we use the Newmark scheme [8] with the regular partition
of the time interval 〈0, T 〉 into nT steps:

0 = τ0 < τ1 . . . < τnT
= T, τk = k∆, ∆ = T/nT , k = 0, . . . , nT .
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Algorithm 1 (Newmark scheme.)
Step 1. {Initialization}

Set the initial conditions in time τ = 0 for u, u̇, ü. Set ∆ and parameter β and
compute the constants:

a0 =
1

β∆2
, a2 =

1

β∆
, a3 =

(

1

2β
− 1

)

Step 2. {Effective stiffness matrix assembly}

Kef = K+ a0M

Step 3. for τ = τk, k = 0, . . . , nT

{Right hand side}

f ef = fτ+∆ +M(a0uτ + a2u̇τ + a3üτ )

{Solution to the minimization problem}

min
1

2
u⊤Kefu− u⊤f ef subject to Bu = c (13)

end for

4 TOTAL FETI-DP

The problem (13) has the same structure as in standard Total FETI method and could
be solved by this standard approach. However, to describe the TFETI-DP method, we
will consider the problem (13) in the form

min
1

2
u⊤Kefu− u⊤f ef subject to

{

B0u = c0
B1u = c1

, (14)

where the equality constraints are split up into two parts. The first part B0u = c0 := o

consists of m0 equalities enforcing the continuity in the subdomain corner nodes of each
subdomain (see Figure 2, blue arrows), while B1u = c1 consists of m1 equalities enforcing
the continuity across the rest of the subdomain interfaces and the Dirichlet condition (see
Figure 2, red arrows).

The KKT optimality conditions lead to the saddle point problem




Kef B⊤

0 B⊤

1

B0 O O

B1 O O









u

λ0

λ1



 =





f ef

c0
c1



 (15)

or
[

K̃ef B̃⊤

B̃ O

][

ũ

λ̃

]

=

[

f̃ ef

c̃

]

, (16)
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where K̃ef , B̃, ũ, λ̃, f̃ ef , and c̃ respect the block structure indicated in (15).
In order to eliminate the primal variables ũ from the system (16) we express

ũ = (K̃ef )−1(̃f ef − B̃⊤λ̃) (17)

from the first equation. Substituting (17) into the second equation of (16) and using the
lumped preconditioner M−1

L = B̃K̃efB̃⊤ we get the system

M−1
L F̃λ̃ = M−1

L
g̃, (18)

with the notation
F̃ = B̃(K̃ef )−1B̃⊤, g̃ = B̃(K̃ef )−1f̃ − c̃ .

This system is solved by conjugate gradient method (PCG).

In every PCG iteration we need to compute x̃ = (K̃ef )−1b̃, where b̃ =
[

b⊤

0 d⊤

0

]⊤

is
a given vector. To do this we solve the system

K̃ef x̃ = b̃ ⇐⇒

[

Kef B⊤

0

B0 O

] [

x0

µ0

]

=

[

b0

d0

]

(19)

by a TFETI based solver again. We use a notation x̃ =
[

x⊤

0 µ⊤

0

]⊤

. Using

x0 = (Kef )−1(b0 −B⊤

0 µ0), (20)

and substituting it into the second equation in (19) we get

F0µ0 = g0, (21)

where
F0 = B0(K

ef )−1B⊤

0 , g0 = B0(K
ef )−1b0 − d0.

Equation (21) is solved by a direct solver.

5 NUMERICAL EXPERIMENTS

Our benchmark is a transient problem of 3D elastic box Ω of size a = 10 [mm] depicted
in Figure 3. Material constants are defined by the Young modulus = E = 2.1 · 105 [MPa],
the Poisson ratio ν = 0.3, and the density ρ = 7.85 · 10−9 [ton/mm3]. The displacements
(the result of the static problem, the box is loaded by pressure load) are prescribed as an
initial condition of the transient problem.

We decompose the box into s subdomains, for each we have regular rectangular dis-
cretization with 113 nodes. For the time discretization, we use Algorithm 1 with the
constant time step ∆ = 10−4 and solve the problem of box oscillations. The iteration
counts in the first time step are depicted in Tables 1 and 2.
Remark: To compute larger problems in effective way we plan to use a Hybrid TFETI
implementation [2], where the inner dual problem is in a block diagonal form and so can
be easily parallelized.
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Figure 3: Transient problem of 3D elastic box.

Table 1: Iteration counts for CG and PCG with lumped preconditioner. The positions of fixing nodes
(corners) are in Gauss points, 4 nodes per face.

s CG PCG(lumped)
23 55 38
43 72 59
63 84 64

Table 2: Iteration counts for CG and PCG with lumped preconditioner. The positions of fixing nodes
(corners) are generated via METIS, 5 nodes per face.

s CG PCG(lumped)
23 44 35
43 62 42
63 67 49
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