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Abstract. Flows around bluff bodies, a circular cylinder for instance, are difficult to
simulate accurately with a RANS method. To improve this type of simulations, LES
models are considered in this paper. The idea behind these models is to minimize the
subgrid dissipation. The models are based on the invariants of the rate of strain tensor.
Also the governing equations are discretized such that less artificial dissipation is added.
To proposed LES models are compared to an ILES model. The ILES model introduces
artificial dissipation originating from the discretization of the governing equations. The
comparison is performed using MARIN’s in-house CFD solver ReFRESCO. A flow around
a circular cylinder with Re = 3, 900 is considered here to evaluate the LES models.
The (I)LES models clearly perform better than no model. The differences between the
turbulence models, however, were small.

1 INTRODUCTION

Turbulent flows in maritime applications usually contain a wide range of length and
time scales, especially for high Reynolds numbers. Therefore, it is not feasible to solve
such flows with direct numerical simulation (DNS). To reduce CPU-times, turbulence
models are used. However when considering a flow around a bluff body, like a circular
cylinder, RANS models often do not provide the desired accuracy. Hence the focus in this
paper is on LES models. In order to test several LES models, they have been implemented
in MARIN’s in-house CFD solver ReFRESCO. The finite volume code ReFRESCO can
handle unstructured meshes, which is convenient for complex maritime applications with
high Reynolds numbers. Additionally, local grid refinement can be applied to enhance
the resolution in regions of interest.
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This paper is organized as follows. In the first section the discretization of the Navier-
Stokes equations will be discussed. The following section gives an overview of the LES
models, which have been implemented in the CFD-solver ReFRESO. Then, numerical
results for a flow around the circular cylinder with Re = 3, 900 are presented. Results
from an ILES model are also shown for comparison. This benchmark case has been studied
many times, see for instances [1, 2, 3, 4, 5]. These references report small differences in the
drag coefficient and the angle of flow separation, whereas the recirculation length shows
much more spreading. Our results confirm this.

2 DISCRETIZATION OF NAVIER-STOKES EQUATIONS

The incompressible Navier-Stokes equations in integral form, for velocity component
φ, are given by

∂

∂t

∫
Ω

ρφdΩ +

∫
Γ

ρφ(u · n)dΓ +

∫
Γ

pndΓ−
∫

Γ

(µ∇φ) · ndΓ = 0,

∫
Γ

u · n dΓ = 0, (1)

where Ω is any part of the fluid domain, Γ = ∂Ω, ρ the density of the fluid, u the velocity
vector. The dynamic viscosity is given by µ, p is the pressure.

The semi-discretized form of the incompressible Navier-Stokes equations becomes

Mduh
dt

+ C(uh)uh + Gph − Vuh = 0, Duh = 0, (2)

where the diagonal mass matrix M is built from the volume of the fluid cells, uh is the
discrete velocity vector, C(uh) represents the discretization of the convective fluxes, Gph
is the discrete integrated pressure gradient, ph is the discrete pressure, V(uh) represents
the diffusive term and finally the discrete integrated divergence is denoted as Duh.

The discrete variables, in ReFRESCO, are co-located at the cell centers, which is more
convenient in combination with unstructured grids. The Navier-Stokes equations are
solved implicitly in time by employing a second-order backward differentiation formula
(BDF2)

M3/2un+1
h − 2unh + 1/2un−1

h

∆t
+ C(un+1

h )un+1
h + Gpn+1

h − Vun+1
h = 0, Dun+1

h = 0. (3)

The momentum equation is linearized by a Picard iteration. The linearized system of
equations is solved using a SIMPLE algorithm [6].

2.1 Symmetry preserving discretization

Verstappen et al. [7] showed that if the discretization of the Navier-Stokes equa-
tions preserves the underlying symmetries no artificial damping is needed to stabilize
the discretization, provided that the mesh stretching is mild. In order to obtain sym-
metry preserving discretization, the convection should be skew-symmetrically discretized,
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C(uh) = −CT (uh), meaning a central scheme in which the face velocity is approximated
by mesh-independent weights (e.g. φij = 1

2
(φi + φj), where φij is a value at the cell face

between cell i and cell j). Also the transpose of the pressure gradient should be equal to
minus the discrete divergence operator (D = −GT ). Since we have a cell centered grid
arrangement, spurious pressure oscillations can occur. The approach in ReFRESCO is to
employ the pressure weighted interpolation (PWI) method [8], which solves the pressure
decoupling problem, but also introduces artificial dissipation [9]. Felten et al. [10] showed
that the error (caused by the PWI) in the kinetic energy scales as O(∆t∆x2). So by
taking a small time step and a relative fine mesh, the error in the kinetic energy should
be minimal.

2.2 Defect correction

A higher-order scheme such as QUICK leads to a wider stencil. On an unstructured
grid where the Navier-Stokes equations are solved implicitly this is less desirable, since
this wider stencil introduces more non-zero entries in the coefficient matrices C,G and V .
The defect correction approach [11] (also called deferred correction) makes it possibles
to use higher-order approximation without introducing a wider stencil. The higher-order
approximations are calculated from a previous iteration and placed in the right-hand side
of the linearized systems. A lower-order approximation will be put in the left-hand side
and also in the right-hand side, where it is calculated from a previous iteration. For
instance, the skew-symmetric discretized convection term is stated in defect correction
form as

C(uh)uh = C(ukh)udsu
k
h +

(
C(uk−1

h )cdsu
k−1
h − C(uk−1

h )udsu
k−1
h

)
, (4)

where the subscript uds and cds stand for, respectively, upwind and central discretization.
The k denotes here the current outerloop iteration (in which the non-linear Navier-Stokes
equations are solved) and k − 1 the previous outerloop iteration.

3 LARGE EDDY SIMULATION MODELS

For simulating flows around bluff bodies, RANS models may not be accurate enough.
To improve the accuracy, LES models are appropriate, for instance. An LES model should
resolve scales of size ≥ ∆, the filter length, whereas the scales smaller than ∆ should be
filtered out. In order to describe the interaction between the production of small scales
of motion and the dissipation, the local strain tensor, S(u) = 1

2

(
∇u + (∇u)T

)
(a real

symmetric 3 × 3 matrix) is very useful [12]. The 2nd invariant and the 3rd invariant of
the rate of strain tensor are given by

Q(u) = 1
2
tr(S2(u)), (5)

R(u) = −1
3
tr(S3(u)) = − det (S(u)) . (6)

The quantity Q is a measure for the dissipation at the smallest scales. The transfer of
energy from the resolved scales to the unresolved (subgrid) scales is represented by a
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positive R, called forward scatter. If backscatter occurs (R < 0), the kinetic energy of
subgrid scales is transferred back to the resolved scales. A proper LES model should
include a proper treatment of forward scatter and backscatter.

3.1 Eddy viscosity model based on Q and R

The QR model, proposed by Verstappen [12] is formulated as

d

dt

∫
Ω

ρuεdΩ +

∫
Ω

ρ(uε · ∇)uεdΩ +

∫
Ω

∇pεdΩ−
∫

Ω

∇ · ((µ+ µe)∇uε) dΩ = 0, (7)

with the turbulent eddy viscosity, νe = µe/ρ, given by

νe =
3

2

1

λ∆

|R|
Q

or νe =
3

2

1

λ∆

max(R, 0)

Q
, (8)

where λ∆ is the estimated smallest eigenvalue of the local discrete diffusion operator. The
turbulent eddy viscosity is added at the locations where the small scales of motions are not
resolved, to counteract the production term. In Eq. (8) two options are given for νe: |R|
and R+ = max(R, 0). The former is active when forward scatter and backscatter occurs,
while the latter is only active in the case of forward scatter and neglects the occurrence
of backscatter.

Note that the classical Smagorinsky model reads νe = C2
S∆2
√

4Q, with CS ≈ 0.17 and
∆ a filter length. Since this model only incorporates Q, the Smagorinsky model is also
active in regions where the flow becomes 2D or laminar. This is in constrast to the QR
model, which is not active in that case since R becomes zero.

3.2 LES model based on regularization

To avoid interference with the subtle interplay between inertia and dissipation of the
flow, artificial dissipation should be avoided. This can be accomplished by preserving the
symmetries of the Navier-Stokes equations [7]. To restrain the production of small scales
of motion, the convection term will be approximated by a regularization model, which
smooths the convection using a filter operation. There is a whole class of regularization
models [13], preserving the symmetries. Here, we consider the second-order approximation
of the convection, C2 = C(u)u. The filter F , defined by Fφ = φ, should be self-adjoint
in order to keep the regularization model skew-symmetric. Trias et al. proposed to use a
filter based on the Laplace operator, given by F = (1 +∇ · (α∇)) [14]. The local variable
parameter α which controls the filter is determined by a damping factor function f2

f2(α) =
λ∆

ρ/µ

Q

|R|
. (9)

Note that filtering increases the complexity of the nonlinear system of equations, but by
using a defect correction approach (see Section 2.2) the filtering does not enter into the
matrix of the linear system.
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Figure 1: Overview of our numerical setup (left) and some mesh details of 0.84M grid (right).

3.3 Blend model

This model is a blend between an LES model based on regularization [13] and an eddy-
viscosity model [12]. The non-linear convection term produces small scales of motion. At
the smallest scale the diffusion should dissipate these scales. But on an LES grid, these
smallest scales are not resolved. Therefore, an eddy viscosity will be computed such
that the diffusion counteracts the production term. In order to prevent the transfer of
energy from unresolved scales to resolved scales (backscatter), the convection term will
be regularized.

Depending on the physics of the flow, the QR model or the regularization model will
be used. If the energy is transferred from resolved scales to unresolved scales (R > 0),
the QR model will be applied. A regularization model is imposed, when backscatter is
appearing (R < 0).

4 CIRCULAR CYLINDER

The turbulence models will be tested for a turbulent flow around a circular cylinder with
Re = ρurefD/µ = 3, 900, where D denotes the diameter of the cylinder. This benchmark
case has been studied extensively, resulting in many numerical and experimental results,
see for instance [1, 2, 3, 4, 5].

4.1 Setup numerical experiment

Our setup for the numerical experiments is displayed in Figure 1, where the description
of the computational domain and the boundary conditions are shown. In this paper
two meshes will be considered. The unstructured meshes, constructed with Hexpress
[15], contain 0.20M and 0.84M grid cells. On the cylinder, in circumferential direction,
130 cells are situated for the 0.84M grid, whereas the coarser mesh only has 80 grid
cells. This means that on the 0.20M grid every grid cell along the surface can only
represent 4.5◦ and the finer mesh has at each 2.7◦ a grid cell. For both meshes, the
mesh width perpendicular to the circular cylinder, defined as δ, is 1 · 10−3/D. With this
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δ the y+ = uτy/ν is at maximum 0.5, where uτ is the friction velocity. Following the
guidelines from Coleman et al. [16], our meshes satisfy the requirement that the first grid
cell should be at y+ < 1. Outside the boundary layer, in the near wake, the grid cells
have size hx/D = hy/D ≈ 0.0313 and hz/D ≈ 0.0924 for the 0.84M grid. The coarser
mesh, 0.20M grid, has grid cells of size hx/D = hy/D ≈ 0.0521 and hz/D ≈ 0.175. Some
plots of the 0.84M mesh are shown in Figure 1. The dimensionless time step we took for
all simulations was uref∆t

D
= 1/64.

All the turbulence models, discussed in Section 3, will be tested here. Furthermore,
results obtained with an Implicit LES model (a QUICK scheme with mesh-dependent
weights and flux limiter) will be shown for comparison. Using an ILES model means that
no subgrid scale model is implemented explicitly, instead the (locally) applied numerical
dissipation suppresses the unresolved scales of motion. Also a central scheme with mesh-
independent weights (see Section 2.1) without a turbulence model is considered here.
Note that this will not be a DNS result, because the mesh is too coarse to capture all the
small scales of motion. For the previous mentioned (turbulence) models a flux limiter is
applied at a large distance of the cylinder (x/D > 4.3). At that location, the grid has
less grid resolution, so the flux limiter will numerically damp out the flow, since we are
not interested in that region.

4.2 Results

In Table 1 some global flow quantities are presented. Note that all of these quantities
are averaged in time and span-wise direction. The lift and drag coefficients are nondi-
mensionalized as follows CD = Fx

1
2
ρu2

refLD
and CL = Fy

1
2
ρu2

refLD
, where Fx is the total force in

the x-direction, consisting of the shear stress and the pressure acting in the x-direction.
Here, LD = 3.142D is the projected area of the circular cylinder. The total force in the
y-direction is given by Fy, which consists of the normal stress and the pressure acting in
the y-direction. The dimensionless Strouhal number is defined as St = fSD

uref
, where fS is

the frequency corresponding to the lift coefficient. The Strouhal number is determined
from the spectra of the lift. lr is the length of the recirculation zone. The angle at which
the flow separates from the cylinder surface is denoted by φs, where 0◦ is located at the
stagnation point and from there in clockwise direction it increases. Note that φs in our
numerical experiments is determined by interpolation between two grid cells. Recall: on
the 0.2M grid each grid cell represents 4.5◦.

Before we start comparing our results with experimental measurements and numerical
results from the literature, one remark has to be made. There is a large scattering in the
mean flow results for the circular cylinder with Re = 3, 900 found in the literature, see
Table 1 and Figure 2. Lehmkuhl et al. [2] observed that there are two modes present in
the flow causing shrinking (mode H) and enlarging of the recirculation bubble (mode L).
This phenomenon seems to be responsible for the large spreading in the mean flow results.
In Table 1, one observes that the mean drag coefficient varies from 0.98 till 1.04. The
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Figure 2: Example of large scattering of results found in the literature. Left : Time and span-wise
averaged stream-wise velocity along the centerline. Right : Fluctuation of averaged steam-wise velocity
at x/D = 1.06.

Strouhal number seems to be less dependent and is around 0.21. As already discussed
the spreading in the length of the recirculation bubble is large. It goes from 1.26 till 1.66.
The angle at which the flow separates from the cylinder surface is around 88◦.

Table 1: Present numerical experiments compared with experimental measurements and numerical
results from the literature.

Mesh Cycles CD CL St lr φs
No model (Central) 0.20M 13 1.127 0.003 0.202 0.88 91.7
ILES, QUICK with lim. 0.20M 28 1.211 0.004 0.211 0.78 91.2
QR with |R| 0.20M 35 1.113 0.004 0.202 1.04 90.9
QR with R+ 0.20M 35 1.122 0.010 0.200 0.98 91.2
C2 0.20M 20 1.014 -0.008 0.209 0.98 91.6
Blend 0.20M 28 1.038 -0.008 0.205 0.98 91.5
No model (Central) 0.84M 59 1.141 -0.001 0.211 1.39 88.5
ILES, QUICK with lim. 0.84M 88 1.017 -0.000 0.213 1.52 87.3
QR with |R| 0.84M 21 1.061 0.003 0.214 1.42 87.4
QR with R+ 0.84M 58 1.003 0.003 0.210 1.64 86.9
C2 0.84M 50 1.029 -0.001 0.218 1.23 88.1
Blend 0.84M 54 1.023 -0.002 0.217 1.30 87.9
Lehmkuhl et al. [2] (DNS) 850 1.015 0.215 1.36 88
Lehmkuhl et al. [2] (DNS, mode L) 250 0.979 0.218 1.55 87.8
Lehmkuhl et al. [2] (DNS, mode H) 250 1.043 0.214 1.26 88.25
Kravchenko et al. [1] (LES) 7 1.04 0.21 1.35 88
Norberg [3, 4] (Exp) 0.98 0.22 1.66
Parnaudeau et al. [5] (Exp) 250 0.208 1.51 88
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First we start comparing the global flow quantities from our numerical results on the
0.20M mesh with the reference data, reported in Table 1. First we observe that φs was
not predicted at the correct location on the 0.20M grid. This is caused by the insufficient
grid resolution to capture the geometry of the circular cylinder. Hence, the length of the
recirculation zone is also incorrect for the 0.20M grid. The vortex shedding frequency or
Strouhal number, however, seems to be correct. But despite this situation, (I)LES models
and also the no-model simulation produce more or less the same results.

By looking at the results obtained on the 0.84M grid, it seems that most of the CD’s
are within the range set by the results from the literature. Only the simulation without
any model seems to predict a higher CD. The CL, although not reported in the literature,
is almost zero for all models as it should be. The (I)LES models and simulation without
any model predict the Strouhal number quite well, they are all in close agreement with
the literature. The angle of flow separation is for almost all models less than 0.5◦ off
compared to the reference data. Only the QR model with R+ deviates with 1.0◦. The
length of the recirculation region, is however, very sensitive to mode L and H. This is
also noticeable in our numerical results, because we do not have enough vortex shedding
cycles compared to the reference data (see Table 1). Therefore, it may happen that the
obtained results are closer to one of the modes instead of the long-time averaged results,
where mode L or mode H are less pronounced. Therefore, we group our results, mainly
based on the lr, as well as possible and check if the results show similarities with the
corresponding mode. Since the results on the 0.20M grid deviate a lot from our numerical
results on the 0.84M grid and the reference data, the mean flow profiles are not shown
here. Only for the 0.84M grid, some mean flow profiles are plotted in Figures 3-8. The
fluctuations of the stream-wise velocity along the centerline Figures 3-5 show locally some
wiggles. At those locations, the grid resolution makes a transition from fine to coarse
with a factor of 2. This suddely decrease in cell size, in combination with the central
scheme with mesh-independent weights, is causing this. The same phenomenon is also
happening, although less noticeable, in the stream-wise velocity at |y/D| > 1, see Figures
6-8.

The turbulence models and the simulation without any model give varying results for
the mean stream-wise velocity along the centerline, see Figures 3-5. The flow profiles,
plotted in Figure 4, correspond well with the results from [2] and [5]. The associated fluc-
tuations, however, seem to give a different profile than the ones obtained in the literature.
The results in Figure 3 show that the stream-wise velocity as well as the fluctuations
resemble also the reference data. Only the top of the fluctuations is somewhat lower than
what is obtained in the literature. Also in Figure 5, the shape of the fluctuations is similar
to the reference data, but again the top of the fluctuations obtained with the turbulence
models is lower. The simulation without any model predicts a too high and too wide
peak, which indicates that the no-model simulation has too little dissipation. The local
minimum velocity in the recirculation bubble seems to be larger than what is found in
the literature. Considering the stream-wise velocity at x/D = 1.06 and its corresponding
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Figure 3: Time and span-wise averaged stream-wise velocity (left) and its fluctuation (right) along the
centerline on the 0.84M grid. Results are compared with results from the literature, without a preference
for mode L or H.
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Figure 4: Time and span-wise averaged stream-wise velocity (left) and its fluctuation (right) along the
centerline on the 0.84M grid. Results are compared with mode L results from the literature.
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Figure 5: Time and span-wise averaged stream-wise velocity (left) and its fluctuation (right) along the
centerline on the 0.84M grid. Results are compared with mode H results from the literature.
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Figure 6: Time and span-wise averaged stream-wise velocity (left) and its corresponding fluctuation
(right) along x/D = 1.06 on the 0.84M grid. Results are compared with results from the literature,
without a preference for mode L or H.
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Figure 7: Time and span-wise averaged stream-wise velocity (left) and its corresponding fluctuation
(right) along x/D = 1.06 on the 0.84M grid. Results are compared with mode L results from the
literature.
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Figure 8: Time and span-wise averaged stream-wise velocity (left) and its corresponding fluctuation
(right) along x/D = 1.06 on the 0.84M grid. Results are compared with mode H results from the
literature.
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fluctuation (Figures 6-8), the results obtained by the turbulence models predict globally
the same flow profiles as given in the literature. The no-model simulation (Figure 8)
predicts again a different profile.

5 CONCLUSIONS AND DISCUSSIONS

The novel LES models in combination with a symmetry preserving discretization, have
been tested on a flow around a circular cylinder with Re = 3, 900. In order to investigate
the differences of each of the proposed LES models, two meshes were considered. The
coarsest mesh, containing 0.20M grid cells appears to be too coarse to capture the ge-
ometry of the circular cylinder. On this mesh, all of the proposed LES models and also
the ILES model gave incorrect results. On the 0.84M grid, we observed two modes in
the flow, just like Lehmkuhl et al. [2], which explains the large spreading in the global
flow quantities and profiles we had in our numerical results. Therefore, we grouped the
results for each of the (I)LES models and the simulation without any model based on the
modes observed by Lehmkuhl et al. [2]. For each group, the turbulence models seem to
give reasonable results. There was not really much difference between all of the (I)LES
models. The simulation without any model, however, did not give satisfactory results,
due to the lack of modelling the subgrid scales. To avoid the situation that we have to
group our results, much more shedding cycles are needed. Roughly speaking, we need
a factor 10 more, such that there is no preference anymore for a particular mode. So
to summarize, even on a coarse mesh there was not much difference between the tested
turbulence models and considering the fact that you need a lot of vortex shedding cycles,
we concluded that the circular cylinder with Re = 3, 900 is not the most suitable test
case for testing our proposed LES models. Therefore we will focus in the near future on
a different test case, for instance a square cylinder with Re = 22, 000.
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