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Abstract. In this paper advanced turbulence simulations at Reynolds numbers in the
range of 1.4× 105-8.5× 105 will be carried out by means of large-eddy simulations. Nu-
merical simulations using unstructured grids up to 90 million of control volumes have
been performed on Marenostrum Supercomputer. One of the major outcomes of this
work is to shed some light on the wake topology and flow features at critical and super-
critical Reynolds numbers, whilst at the same time to study the shear layer instabilities
mechanisms and their role on the drag crisis phenomena.

1 INTRODUCTION

The flow past a circular cylinder is a canonical case which is of relevance for many
practical applications. This case has been extensively studied both experimentally (see
for instance [1, 2]) and numerically (e.g. [3, 4]). In spite of its simple geometry, the
presence of interesting flow features continues to make this problem subject of many
current studies. This problem is characterised by flow separations, transition to turbulence
in the separated shear layer and, the shedding of vortices. Williamson in its review
[5], performed a comprehensive description of the different flow phenomena and regimes
at different Reynolds numbers. Steady laminar flow exists at Reynolds numbers up to
approximately 40 (based on the cylinder diameter and the free-stream velocity) with a
pair of steady dipole vortices forming behind the cylinder. The laminar vortex shedding,
also known as the von-Kármán vortex street, is observed at Reynolds numbers up to
about 190. When the Reynolds number is approximately 260, the flow experiences a
transition to a three dimensional finer scale. With increasing Reynolds number, the three
dimensional cylinder wake becomes more chaotic. Finally, at Reynolds number around
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1200 the shear layers separating from the cylinder become unstable[6]. As the Reynolds
numbers approaches a critical value around 2 × 105, the transition to turbulence moves
towards the cylinder surface causing the delaying of the separation point and a dramatic
decrease of the drag force on the cylinder surface. In the critical Reynolds number range
(Re = 2 × 105 - 3.5 × 105), flow transition is accompanied of different regimes such as
the presence of asymmetric forces on the cylinder surface, which cause average lift to be
greater than zero [7, 8]. At higher Reynolds numbers, beyond 3.5 × 106, the boundary
layer at the cylinder becomes turbulent before separation (see for instance [1]).

In the range 2 × 105 < Re < 5 × 105, also known as the critical regime[9, 10, 8]
there is a sharp decrease of the drag coefficient magnitude, falling to a minimum value of
CD ≈ 0.2. In this regime, transition to turbulence firsts occurs in one of the boundary
layers and is characterised by a separation with further reattachment of the boundary
layer, forming a bubble similar to that observed in the flow past airfoils at low-to-moderate
Reynolds numbers. This laminar separation bubble (LSB) on one side of the cylinder
surface is the cause of asymmetric forces acting on the cylinder surface with a mean
lift coefficient greater than zero (CL > 0). Flow separation in the transitional shear-
layers occurs further downstream at about 140◦ (measured from the front stagnation
point). Once the drag coefficient reaches its minimum value, (i.e. supercritical regime
with Re = 5×105−2×106), two LSB on both sides of the cylinder surface are established
citeDEL53-TR,ACH68-A,SHI93-A. In this regime, the wake is thinner with width lower
than the cylinder diameter. There is much controversy about whether vortex shedding
exists or it is completely suppressed [8, 11]. In this work large-eddy simulations of the
flow at critical and super-critical Reynolds numbers in the range of Re = Uref D/ν =
1.4× 105 − 8.5× 105 are carried out. This aims at shedding some light into the changes
in topology which occur at these Reynolds numbers and to answer the question whether
vortex shedding is suppressed at supercritical Reynolds numbers.

2 MATHEMATICAL AND NUMERICAL MODEL

2.1 Governing equations

The spatially filtered Navier-Stokes equations can be written as,

∂ui
∂t

= 0 (1)

∂ui
∂t

+
∂uiuj
∂xj

− ν ∂2ui
∂xj∂xj

+ ρ−1 ∂p

∂xi
= −∂Tij

∂xj
(2)

where u and p stand for the filtered velocity and pressure, respectively. ν is the kinematic
viscosity and ρ the density of the fluid. In the equation 2, Tij is the subgrid scale (SGS)
stress tensor which has to be modeled. Its deviatoric part is given by,

Tij −
1

3
Tkkδij = −2νsgsS ij (3)
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where S ij is the large-scale rate-of-strain tensor, S ij = 1
2

(gij + gji) being gij = ∂ui/∂xj.
δij is the Kronecker delta. To close the formulation, an appropriate expression for the
subgrid-scale viscosity should be provided. In this paper, the wall-adapting local-eddy
viscosity model (WALE) [12] is used. This model, proposed by Nicaud and Ducros [12]
evaluates the eddy viscosity using the square of the velocity gradient tensor. In its for-
mulation, the SGS viscosity accounts for the effects of both the strain and the rotation
rates of the smallest resolved turbulent fluctuations. In addition, it has a proper near-wall
behavior (νsgs ∝ y3). The WALE model evaluates the eddy viscosity as,

νsgs = (Cw∆)2
(Vij : Vij)

3
2

(Sij : Sij)
5
2 + (Vij : Vij)

5
4

(4)

in the above expression, Vij is the deviatoric part of the square of the velocity gradient
tensor Vij = 1

2

(
g2ij + g2ji

)
− 1

3
δijg

2
kk with g2ij = gikgkj. Cw is the model constant, here a

value of Cw = 0.325 is used.

2.2 Numerical method

The governing equations have been discretized on a collocated unstructured grid ar-
rangement by means of second-order spectra-consistent schemes [13]. Such schemes are
conservative, i.e. they preserve the symmetry properties of the continuous differential
operators and, ensure both stability and conservation of the kinetic-energy balance even
at high Reynolds numbers and with coarse grids. For the temporal discretization of the
momentum equation (2) a two-step linear explicit scheme on a fractional-step method
has been used for the convective and diffusive terms [14], while for the pressure gradient
term an implicit first-order scheme has been implemented. This methodology has been
previously used with accurate results for solving the flow over bluff bodies with massive
separation [15, 16, 4, 17].

2.3 Definition of the case and boundary conditions

The flow past a circular cylinder at critical and super-critical Reynolds numbers in the
range of Re = UrefD/ν = 1.4×105 − 8.5×105 is considered. The Reynolds number is de-
fined in terms of the free-stream velocity Uref and the cylinder diameter D. The cases are
solved in a computational domain of dimensions x ≡ [−16D, 16D]; y ≡ [−10D, 10D]; z ≡
[0, 0.5πD] in the stream-, cross- and span-wise directions respectively, with a circular
cylinder at (0,0,0). The boundary conditions at the inflow consist of uniform velocity
(u,v,w)=(1,0,0), slip conditions at the top and bottom boundaries of the domain, while
at the outlet a pressure-based condition is used. At the cylinder surface, no-slip conditions
are prescribed. As for the span-wise direction, periodic boundary conditions are imposed.

Different grids up to ∼ 90 million CVs are used, depending on the Reynolds number.
The boundary layer at the cylinder surface is well resolved, i.e. no wall function is used.
Thus, the meshes are designed so as to keep the non-dimensional wall distance y+ ≤ 2.
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(a) (b)

Figure 1: (left)Drag coefficient vs. Reynolds number. (right) Pressure coefficient on the cylinder surface

To do this, a prism layer is constructed around the cylinder surface. In the problem here
considered, transition to turbulence occurs in the boundary layer. Thus, it should be
stressed that in the present formulation transition to turbulence is well captured by the
model, i.e. no artificial mechanism is imposed for triggering this phenomenon to occur.

3 RESULTS

The simulations have been started from homogeneous flow and initially some random
perturbations have been introduced. In order to ensure a temporal converged statistically
steady state, the flow field has been advanced in time until the initial transient has been
washed out. Then, statistics have been collected and averaged over approximately 25
shedding cycles.

Figure 1 depicts the total drag coefficient and the pressure distribution on the cylin-
der surface at different Reynolds numbers compared with experimental results from the
literature. At these Reynolds numbers, there is a large scattering in the measurements,
as this quantity is highly affected by the cylinder surface roughness, wind tunnel block-
age ratio, inlet conditions, etc., making difficult measurements at this range of Reynolds
numbers. Nonetheless, there is a reasonable agreement between numerical and experiment
results for the whole range of Reynolds numbers considered. The main flow parameters
are summarised in Table 1.

As the Reynolds numbers comes closer to the critical regime, the location of the separa-
tion of the shear layers moves towards the cylinder rear end. In fact, at Re = 1.4× 105, it
occurs at θ = 95◦ which is in good agreement with the value reported by [18] of θ = 94◦.
With the increase in the Reynolds number up to 2.5 × 105 (upper critical range), the
transition to turbulence is earlier triggered on one side of the cylinder. This causes an
asymmetry in the forces acting on the cylinder surface (see figure 1(b) at Re = 2.5× 105)
and a non-zero magnitude of the lift coefficient Cl > 0. As a consequence, separation is
delayed in the turbulent side, it occurs at about θ = 108◦, whereas at the other shear
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Re CD −Cpb ϕsep[
◦] ϕPmin[◦] St

1.4× 105 1.215 1.3 95.5 68.5 0.21
2.5× 105 0.83 0.984 95/252 70/280 0.238
3.8× 105 0.46 0.347 102 83.8 0.238/0.355
5.3× 105 0.296 0.303 101 82 0.368
7.2× 105 0.233 0.224 102.81 84 0.449
8.5× 105 0.216 0.209 103.6 84.2 0.459

Table 1: Flow parameters at different Re numbers. CD drag coefficient, Cpb base pressure, ϕsep sepa-
ration angle (for the cases with LSB indicates the location of the first separation),ϕPmin location where
minimum pressure occurs, St vortex shedding frequency.

layer the flow still separates at θ = 95◦ as can readily be observed in figure 2(a). This
behaviour, was also reported experimentally by Bearman [10] and Schewe [8]. With the
further increase in the Reynolds number, a second bubble appears on the other side of the
cylinder, but the flow is still asymmetric (Re = 3.8× 105). At Re = 5.3× 105, symmetry
is almost recovered and, as the drag approaches to its minimum value Re = 7.2× 105 the
wake also becomes narrow (see also figure 2).

There is little information about the vortex shedding in the range of critical-supercritical
regime, contrary to the subcritical regime, where consistent measurements of this quan-
tity can be found and there is an agreement about the non-dimensional vortex shedding
frequency St = fU/D =∼ 0.19 − 0.21. At these Reynolds numbers, values reported are
quite scattered and inconsistency in the measurements are found. In fact, it has been
argued that in the super-critical regime vortex shedding ceases to occur (see for instance
[11]). However, in the present computations vortex shedding does occur at every Reynolds
number. Indeed, in the critical regime Strouhal number increased from 0.21 to 0.36 at
Re = 5.3 × 105 and then it rose again up to 0.45 in the supercritical zone. It is clear
that the changes in the magnitude of the vortex shedding are related to the changes in
the topology of the wake and the wake width. The reason why some investigators did not
detect vortex shedding at Re > 4× 105 is not clear. However, at these Reynolds numbers
the flow is quite unstable and aspects such as a low cylinder aspect ratio or vibrations in
the wind tunnel can trigger three-dimensional effects in the wake and the loss of coherence
in the vortex shedding. Indeed, [18] observed these effects for low aspect ratio cylinders
and thus no regular signal where detected.

4 CONCLUDING REMARKS

Large eddy simulations of the flow past a circular cylinder at critical and supercritical
Reynolds numbers have been carried out. The main flow parameters have been computed
with reasonable agreement with experimental measurements. The presence of a laminar
separation bubble on one side or both side of the cylinder surface depending on the
Reynolds number has been detected. The turbulent shear-stresses just after separation
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(a)

(b)

Figure 2: Instantaneous velocity profile at different Reynolds numbers (a) Re = 2.5 × 105, (b) Re =
7.2× 105

of the boundary layer cause the transport of the momentum in the separated shear layer
and are responsible for the closure of the laminar separation bubble. Vortex shedding
has been detected at all Reynolds numbers, but the frequency at which vortices are shed
increases as the flow transition from critical to supercritical regimes.
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large-eddy simulations for the flow around aerodynamic profiles using unstructured
grids. Computers&Fluids, 84:176–189, 2013.

[18] E. Achenbach and E. Heinecke. On vortex shedding from smooth and rough cylinders
in the range of Reynolds numbers 6e3 to 5e6. J. Fluid Mech, 109:239–251, 1981.

8


