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Abstract. The higher order multipoint meshless finite difference method (MFDM) is 
considered in this paper. The new approach is based on arbitrary irregular meshes, the moving 
weighted least squares approximation and the local or various global formulations of 
boundary value problems. A priori and a posteriori errors constitute the important part of 
engineering problem analysis. The paper is focused on application of the multipoint method to 
a posteriori estimation of the solution and residual errors. The multipoint approach provides 
high precision results that may be used as a reference solution in global or local error 
estimators. A variety of 1D and 2D tests done confirm high quality of a posteriori error 
estimation based on the multipoint MFDM.  

 
 
1 INTRODUCTION 

Reliable error estimation of a boundary value problems solution constitutes an important 
part of numerical analysis. Both a priori and a posteriori errors [1] may be considered here, 
though the last ones may be evaluated only after a solution of the problem is found. As the 
exact solution is unknown, the true error of the obtained rough solution is evaluated by using 
an improved solution as the reference one. The reference solution needed here may be 
calculated by using an adaptive (h-type) solution approach, or may be achieved without 
raising the number of nodes in the mesh – by rising the approximation order (p-type). Among 
various methods providing the higher order (HO) approximations, the new multipoint 
meshless finite difference method (MFDM) may be used. Therefore, the formulation and 
implementation an a posteriori error estimation approach based on the multipoint MFDM is 
the objective of this research. 

The main idea of multipoint concept was introduced a long time ago by Collatz [2] as 
improvement of FDM based on the higher order approximation. The order of approximation 
of a searched function is raised by assuming additional degrees of freedom at the stencil 
nodes, including e.g. the right-hand side value of  the considered differential equation. In this 
way, the multipoint FD formula takes into account a combination of unknown function values 
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together with a combination of additional degrees of freedom, e.g. right hand side of PDE. 
The higher order FD operator is generated using the same set of nodes as in the non 
multipoint case. This fact is advantage in comparison with other HO methods (e.g. so called 
defect (deferred) correction approach [3], based on increasing the number of nodes included 
into stencil) due to less calculations needed. Such approach improves the quality of solutions 
of boundary value problems analyzed by means of the MFDM.  

The original multipoint Collatz concept (regular meshes, interpolation, local formulation of 
b.v. problems) has been reformulated by the authors [4-6] and extended to the fully automatic 
multipoint meshless FDM. Arbitrarily distributed clouds of nodes, as well as application of 
the moving weighted least squares (MWLS) approximation [7], make possible in this way to 
develop the multipoint MFDM solution approach. Besides development of the multipoint 
meshless FDM for the analysis of b.v. problems given in the local (strong) formulation, the 
multipoint method was also extended to the global and global-local formulations including the 
minimum of the total potential energy, the variational Galerkin and the meshless local Petrov-
Galerkin (MLPG) [8]. 

Due to its high quality results, the multipoint method may be also used to provide reference 
solutions needed for the global or local error estimation. A posteriori error analysis of the 
multipoint MFDM results may be applied for two purposes: to examine the solution quality 
and to generate series of adaptive meshes. In this paper attention is laid upon formulation and 
preliminary application of the multipoint MFDM to a posteriori solution error estimation. 

2 MULTIPOINT MFDM SOLUTION APPROACH  

Let us consider the local (strong) formulation of boundary value problems given in a 
domain Ω for the  n-th order ODE (PDE)  with appropriate b.c.   

, for
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, for
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where  L, G  are differential operators or an equivalent global (weak) one formulated as a 

variational principle  

( , ) ( ),b u v l v v V= ∀ ∈ . 

Here  b is a bilinear functional dependent on the test function v and solution u of the 
considered b.v. problem, V  is the space of test functions,  l  is a linear form dependent on  v.  

  

Figure 1: MFD star (stencil) 
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Using the FDM or MFDM discretization based on the selected FD stars (Fig. 1) with 
respect to a central node i, the classical difference operator Lu is presented in the following 
form 

( )
i i j j i i i

j i

u Lu c u f Lu f≈ ≡ = ⇒ =∑L .   (1) 

In the multipoint formulation, the MFDM difference operator Lu is obtained by using 
additional degrees of freedom at nodes. Instead of the function value at the central node only, 
a combination of the right-hand side values fi  of the considered differential equation at each 
stencil node is applied:  

( ) ( )
i i j j j j i i

j i j i

u Lu c u f Lu Mf≈ ≡ = ⇒ =∑ ∑αL .   (2) 

Moreover arbitrarily distributed clouds of nodes may be used then. This is the basic formula 
for the so called multipoint specific formulation. The following notation has been used here: j 
– is a number of a node in the selected FD star,  Mfi  – a combination of the equations right-
hand side nodal values, fi – may present value of the whole operator  L   or its part only, e.g. a 
specific derivative. In general L may be either referred to the left side of differential eqs or to 
the integrand in the global formulation of b.v. problem, and to the boundary conditions.  

In the multipoint formulation, the difference operators  L and  M are obtained by means of 
the Taylor series expansion of unknown function  u  and additional degrees of freedom, e.g. 
right hand side part  f,  including derivatives of the higher order.  

3 ERROR ANALYSIS 

Examination of the solution of b.v. problems quality and mesh adaptation is based on an a 
posteriori error analysis [1]. Because, in general, the exact solution is unknown, the higher 
precision result – in this case the HO multipoint MFDM solution – can be used as the 
reference solution to evaluate the error. Several types of error estimations are currently 
available [9]. Three of them applied to multipoint approach are briefly discussed below.  

3.1 Hierarchic estimators 

The hierarchic solution estimators are based on the comparison of calculated results with 
reference solution obtained using h-, p-, or hp- approach. The multipoint method may be 
successfully applied to this purpose.  

When the exact analytical solution uT of a boundary value problem is known (e.g. in 
benchmark problems) and rough numerical solution uL  using standard MFDM approach (1) is 
found, the true solution error could be calculated as follows 

TL T Le u u= − . (3) 

When the multipoint approach (2) is applied, the improved higher order solution uH  is 
obtained and used as the reference solution. One may then estimate the true solution error (3) 
as follows 

HL H L TLe u u e= − ≈ . (4) 
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Moreover, the exact higher order solution error eTH   
TH T He u u= − . (5) 

may be also estimated by using the multipoint method with different orders  of approximation 
e.g.,  p1 and  p2 > p1. In this case  

( 1) ( 2)HH H p H p THe u u e= − ≈ . 

The error estimation quality may be measured by means of the so called effectivity index.  

eff 1 HL TL TLI e e e= + − . (6) 

The index is based on comparison of the true low order e.g. eTL and estimated eHL errors, and 
Ieff = 1 for the true solution. 
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Figure 2: Comparison of the error estimation  eHL  and exact error eTL  for low order solution.  

          Test1. Poisson’s b.v.p. with Dirichlet b.c. 2 ( , )u f x y∇ = , 0 , 1x y≤ ≤ , ( )( , ) 2 sinf x y x y= − ⋅ +  

Several tests done for the multipoint approache confirm the observation that the calculated 
values of the above effectivity index were close to 1 (Fig. 2). 

The global error may be measured using the energy norm, computed either as the 
continuous L2(Ω) norm 

1/2

( )

1
( , )

E
e b u u u u d

Ω Ω

 = − − Ω Ω 
∫ ɶ ɶ  

or the discrete l2 one 



Irena Jaworska and Janusz Orkisz 

 5

( )
1/2

2

2
1

1 N

i i
i

e u u
N =

 = − 
 
∑ ɶ . 

Here u is the true solution and uɶ  is an approximate rough one. 

3.2 Residual estimators 

The residual estimators use either explicit residual errors of high order rH, or low order rL 
as follows 

H Hr Lu f= − ,  

   L Lr Lu f= − ,   

(7) 

or equivalent implicit ones (not specified here). Each of them provides a quality measure of 
the higher (multipoint approach) or lower (standard MFDM) order solution error.  

 

Figure 3: Residual error plot 
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Figure 4: Residual error distribution using 20 points between nodes.  
The influence of the MWLS weight factor g 
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Using approximated higher order solution uH, defined at the nodes, one may calculate the 
residuum between the nodes (at the nodes the residual error is equal to zero due to the 
collocation requirement imposed). At the middle of this distance, the residuum is expected to 
reach its maximum value (Fig. 3). However, the tests done showed that the error distribution 
essentially depends on the smoothing parameter g used in the MWLS (Fig. 4). 
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 Figure 5: Convergence rates of solution and its derivatives exact errors. Test1.
 

3.3 Smoothing estimators 

Smoothing estimators (well known as Zienkiewicz-Zhu one [10]) is based on the 
comparison between the recovered and the reference derivatives (e.g. stresses). Using 
multipoint method the unknown function derivatives up to order p are also obtained without 
any additional computational cost besides solution. Then the higher order approximation of 
derivatives may be used instead of the recovered ones. It is worth noticing here, that in 
multipoint approach the convergence rate for solution is of the same order as for its 
derivatives (Fig. 5).  

4 FINAL REMARKS  

The higher order multipoint meshless finite difference method based on arbitrary irregular 
clouds of nodes, moving weighted least squares approximation and the global, local or global-
local formulations of boundary value problems, was considered. The paper focused on a 
posteriori estimation of the global or local solution and residual errors based on the multipoint 
MFDM. 

Due to high quality of its results, the multipoint method  may be also used to develop the 
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reference solutions needed for a posteriori error (global and local) estimation. A posteriori 
error analysis of the multipoint MFDM may be applied for two purposes: examination of the 
solution quality and generation of a series of adaptive meshes. Multiple preliminary tests 
confirm high quality of a posteriori error estimation based on the multipoint MFDM. 

Further development of the use of the multipoint meshless FDM a priori and a posteriori 
error analysis is planned. 
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