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Abstract. The higher order multipoint meshless finite diffiece method (MFDM) is
considered in this paper. The new approach is basedbitrary irregular meshes, the moving
weighted least squares approximation and the localvarious global formulations of
boundary value problems. A priori and a postererors constitute the important part of
engineering problem analysis. The paper is focoseapplication of the multipoint method to
a posteriori estimation of the solution and residereors. The multipoint approach provides
high precision results that may be used as a mferesolution in global or local error
estimators. A variety of 1D and 2D tests done canfhigh quality of a posteriori error
estimation based on the multipoint MFDM.

1 INTRODUCTION

Reliable error estimation of a boundary value peotd solution constitutes an important
part of numerical analysis. Both a priori and ateneri errors [1] may be considered here,
though the last ones may be evaluated only afsalation of the problem is found. As the
exact solution is unknown, the true error of théaoted rough solution is evaluated by using
an improved solution as the reference one. Theramfe solution needed here may be
calculated by using an adaptive-type) solution approach, or may be achieved withou
raising the number of nodes in the mesh — by riliegapproximation ordep{type). Among
various methods providing the higher order (HO) rappnations, the new multipoint
meshless finite difference method (MFDM) may bedustherefore, the formulation and
implementation an a posteriori error estimationrapph based on the multipoint MFDM is
the objective of this research.

The main idea of multipoint concept was introdueetbng time ago by Collatz [2] as
improvement of FDM based on the higher order apprakon. The order of approximation
of a searched function is raised by assuming autditi degrees of freedom at the stencil
nodes, including e.g. the right-hand side valuetw considered differential equation. In this
way, the multipoint FD formula takes into accourtombination of unknown function values
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together with a combination of additional degreédr@edom, e.g. right hand side of PDE.
The higher order FD operator is generated usingstéme set of nodes as in the non
multipoint case. This fact is advantage in commperiwith other HO methods (e.g. so called
defect (deferred) correction approach [3], basedhoreasing the number of nodes included
into stencil) due to less calculatiomseded. Such approach improves the quality of isolsit
of boundary value problems analyzed by means oMiEBM.

The original multipoint Collatz concept (regular shes, interpolation, local formulation of
b.v. problems) has been reformulated by the autlde@$ and extended to the fully automatic
multipoint meshless FDM. Arbitrarily distributedocids of nodes, as well as application of
the moving weighted least squares (MWLS) approxionaft7], make possible in this way to
develop the multipoint MFDM solution approach. Bles development of the multipoint
meshless FDM for the analysis of b.v. problems mjivethe local (strong) formulation, the
multipoint method was also extended to the globdl global-local formulations including the
minimum of the total potential energy, the varinibGalerkin and the meshless local Petrov-
Galerkin (MLPG) [8].

Due to its high quality results, the multipoint imed may be also used to provide reference
solutions needed for the global or local errorreation. A posteriori error analysis of the
multipoint MFDM results may be applied for two pages: to examine the solution quality
and to generate series of adaptive meshes. Ipdpier attention is laid upon formulation and
preliminary application of the multipoint MFDM topsteriori solution error estimation.

2 MULTIPOINT MFDM SOLUTION APPROACH

Let us consider the local (strong) formulation @ubdary value problems given in a
domainQ for the n-th order ODE (PDE) with appropriate b.c.

ru=f, for POQ
u=u(P), ,
Gu=g, for POAQ

where £, G are differential operators or an equivalent glofve¢ak) one formulated as a
variational principle

b(u, v) =1(v), Ovav .,

Here b is a bilinear functional dependent on the testcfiem v and solutionu of the
considered b.v. probler, is the space of test functionk,is a linear form dependent on

Figure 1. MFD star (stencil)
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Using the FDM or MFDM discretization based on tleested FD stars (Fig. 1) with
respect to a central nodliethe classical difference operatan is presented in the following
form

cu=Lly =dcu=f = Luy=f. 1)
0
In the multipoint formulation, the MFDM differenceperatorLu is obtained by using
additional degrees of freedom at nodes. Insteddeofunction value at the central node only,
a combination of the right-hand side valdesf the considered differential equation at each
stencil node is applied:

cu=Ly=>cu=>af = Lu=Mf, (2)
) 0]

Moreover arbitrarily distributed clouds of nodesyntee used then. This is the basic formula
for the so called multipoint specific formulatiofhe following notation has been used he¢re:
—is a number of a node in the selected FD stéfy, — a combination of the equations right-
hand side nodal valuefs— may present value of the whole operator or its part only, e.g. a
specific derivative. In generélmay be either referred to the left side of diffeér@ eqs or to
the integrand in the global formulation of b.v. Iplem, and to the boundary conditions.

In the multipoint formulation, the difference optens L and M are obtained by means of
the Taylor series expansion of unknown functionand additional degrees of freedom, e.g.
right hand side part, including derivatives of the higher order.

3 ERRORANALYSIS

Examination of the solution of b.v. problems quaeiihd mesh adaptation is based on an a
posteriori error analysis [1]. Because, in gendta, exact solution is unknown, the higher
precision result — in this case the HO multipoinEDM solution — can be used as the
reference solution to evaluate the error. Sevenaéd of error estimations are currently
available [9]. Three of them applied to multipoamiproach are briefly discussed below.

3.1 Hierarchic estimators

The hierarchic solution estimators are based orcdimeparison of calculated results with
reference solution obtained usihg p-, or hp- approach. The multipoint method may be
successfully applied to this purpose.

When the exact analytical solutiad of a boundary value problem is known (e.g. in
benchmark problems) and rough numerical soluttonising standard MFDM approach (1) is
found, the true solution error could be calculasdollows

et =u" -u-. (3)

When the multipoint approach (2) is applied, therioved higher order solution™ is
obtained and used as the reference solution. Ogehea estimate the true solution error (3)
as follows

et =u" -u-=e", (4)
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Moreover, the exact higher order solution et
e =u" -u", (5)

may be also estimated by using the multipoint metthish different orders of approximation
e.g., p1 and p2 >pl. In this case

ght = yH(PD _ | H(p2) < g™ '
The error estimation quality may be measured bynweéthe so called effectivity index.
Lo =2+ e ~[e™ ][ ™. ©)

The index is based on comparison of the true lafeoe.ge™ and estimatee™ errors, and
It = 1 for the true solution.

log(error)

| | | |
-1.4 -1.2 -1 -0.8 -0.6

log (h)
SS9 true error, 2 approx.order
EH3El error estimation, leff=1.1

Figure 2: Comparison of the error estimatia@" and exact erroe’™™ for low order solution.
Testl. Poisson’s b.v.p. with Dirichlet li)?u = f(x,y), 0< x,y <1, f(x,y)=-205in(x+y)

Several tests done for the multipoint approachédircnrine observation that the calculated
values of the above effectivity index were closé {#ig. 2).

The global error may be measured using the enemgyn,ncomputed either as the
continuoud_?(Q2) norm

lelic) = (%jg b(u~0, u —a)de

or the discreté’ one
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=0y

i=1

Hereu is the true solution and is an approximate rough one.

3.2 Residual estimators

The residual estimators use either explicit rediéuars of high order", or low orden"
as follows

rH =L - f (7)

r-=Lu- - f

or equivalent implicit ones (not specified heredck of them provides a quality measure of
the higher (multipoint approach) or lower (standsifelDM) order solution error.
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Figure 3: Residual error plot
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Figure 4: Residual error distribution using 20 points betwaedes.
The influence of the MWLS weight factgr
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Using approximated higher order solutigh defined at the nodes, one may calculate the
residuum between the nodes (at the nodes the etsaitor is equal to zero due to the
collocation requirement imposed). At the middleglo$ distance, the residuum is expected to
reach its maximum value (Fig. 3). However, thestekine showed that the error distribution
essentially depends on the smoothing parangateed in the MWLS (Fig. 4).

log(error)

log(h)
©-© solution, 3 approx. order
B2 X derivative
Y derivative

Figure5: Convergence rates of solution and its derivatesesct errors. Testl.

3.3 Smoothing estimators

Smoothing estimatorgwell known as Zienkiewicz-Zhu one [10]) is based the
comparison between the recovered and the refereecwatives (e.g. stresses). Using
multipoint method the unknown function derivatiugs to orderp are also obtained without
any additional computational cost besides solutidren the higher order approximation of
derivatives may be used instead of the recoverexs.oh is worth noticing here, that in
multipoint approach the convergence rate for sotutis of the same order as for its
derivatives (Fig. 5).

4 FINAL REMARKS

The higher order multipoint meshless finite diffece method based on arbitrary irregular
clouds of nodes, moving weighted least squaresoappation and the global, local or global-
local formulations of boundary value problems, vassidered. The paper focused on a
posteriori estimation of the global or local sabutiand residual errors based on the multipoint
MFDM.

Due to high quality of its results, the multipomethod may be also used to develop the
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reference solutions needed for a posteriori ergtob@l and local) estimation. A posteriori
error analysis of the multipoint MFDM may be apgli®r two purposes: examination of the
solution quality and generation of a series of &dapmeshes. Multiple preliminary tests
confirm high quality of a posteriori error estinmtibased on the multipoint MFDM.

Further development of the use of the multipoinshiess FDM a priori and a posteriori

error analysis is planned.
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