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Abstract. Numerical investigation of wave propagation in a cellular solid with closed
cells configuration and entrained fluid showed an existence of two types of pressure waves,
which have opposite polarization and have different phase and group velocities. This is in
agreement with the Biot’s theory, unless that the slow pressure wave appears beyond the
first resonant frequency of the skeleton members. In order to explain this fact we propose
an analytical machro-mechanical model and study dynamical modes contribution.

1 INTRODUCTION

The dynamics of cellular materials present a number of unique phenomena not found in
solid, single-phase materials. Elastic wave propagation in cellular solids is an active topic
of current research. Classical approach to describe wave propagation in porous solids is
based on Biot’s theory [1, 2, 3]. However this theory requires mechanical properties of
both drained and undrained conditions, which are often not available analytically, and
comparisons with specific configurations are based on experiments [4, 5]. Nevertheless,
this model remains a benchmark which was validated with rigorous micromechanical
models [6, 7, 8, 9]. The bulk elastic properties of cellular solids can be found from several
methods [10, 11], however they are done for statics and do not allow to analyze elastic
wave propagation and dispersion sources.

Based on analysis of a periodic square lattice system as a prototypical two-phase
medium [12, 13], we expand our studies to explain the behavior of slow pressure wave,
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which appears beyond a certain frequency. Two pressure waves were predicted by Biot
[1, 2] within the same frequency range (range of coexistence), whereas our results show
that second pressure wave does not propagate below the first resonant frequency of the
skeleton member.

Moreover, Biot’s theory is based on complex expressions of geometric and material
parameters which does not allow the analysis of the physical origin of specific wave-
propagation characteristics. In this paper, we propose a much simpler model for macro-
mechanical model which explains physically the dynamic behavior of cellular solid with
closed cell configuration and entrained gas.

2 NUMERICAL ANALYSIS

We find two types of pressure waves, which have opposite polarization and have different
phase velocities [13]. This is in agreement with the Biot’s theory, unless that the slow
pressure wave appears beyond the first resonant frequency of the skeleton members. This
phenomenon is verified by our numerical model based on finite element analysis where the
element type is chosen according to relative density value [12]. The unit cell correspondent
to this problem is briefly described in the next section.

2.1 Unit cell model

We employ a periodic square lattice in plane conditions with fluid-filled cells as a
two-phase medium (Fig. 1a,b) with the unit out-of-plane thickness. Therefore, the RVE
(Fig. 1c) can be defined by the characteristic length L and wall thickness h/2. The lattice
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Figure 1: Square lattice with walls thickness h and cell length L with (a) ρ∗ < 30% and (b) ρ∗ > 30%.
The superposed unit cell in (a) has thickness h. RVE with solid portion discretized (c) by either beam
or 4-node plane elements shown with appropriate degrees of freedom: ui, wi displacement dofs for both
types of elements, and rotational dof (φi) for beam elements only. In both cases, coupling elements with
both structural and pressure dofs are employed to model fluid-structure interaction.

vectors e1 = Li1, e2 = Li2 define the periodicity of an infinite medium. We use the
results from finite-element (FE) analysis, detailed in [13, 12], where the band structure
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(relation between the frequency ω and the wavevector k = {kx, ky}T along the boundaries
of the irreducible Brillouin zone [14]) is obtained from the eigenvalue problem

([Kr](k)− ω2[Mr](k))ûr = 0. (1)

Here [Kr] and [Mr] are the stiffness and mass matrices of the coupled system reduced to
take in to account symmetry conditions from Bloch theorem, and ûr is the nodal degree-
of-freedom (dof) vector with displacement and pressure amplitudes. Each eigenvalue ω(k)
corresponds to a wave mode. For L = 100 µm, h/L = 0.02, skeleton Young’s modulus
Es = 1 KPa, density ρs = 1000 Kg/m3, and air as the entrained fluid with speed of sound
c0 = 343 m/s, density ρf = 1.225 Kg/m3, and bulk modulus Bf = 142 KPa, we obtain
the band-structure shown in Fig. 2; the solid phase is discretized with beam elements [12].
Following the notation in [12], dashed lines in Fig. 2 denote the solution to the structure-
only configuration (simulations with no pressure dofs involved), while solid lines denote
the solution to the two-phase (FSI) configuration.
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Figure 2: Band structure for RVE with L = 100 µm, ρ∗ = 0.04 discretized with beam elements for the
irreducible Brillouin Zone with high-symmetry points Γ, X, M . Left ordinate is normalized by the first
natural frequency of a clamped-clamped beam, ω0; the second ordinate is normalized by the first natural
frequency of the fluid cavity alone, ωc. Solid lines are the solution to the FSI problem, dashed lines
are the solution to the structure-only case. Circled letters a-f denote wavenumber combinations used to
depict deformed configurations in Fig. 3.

For the aforementioned properties, the following facts transpire. Cell-wall resonance
ω̄ = ω/ω0 = 1 is a strong source of dispersion. Note that if ρf � ρs, ω0 is that of
a clamped-clamped beam in vacuum, otherwise the fluid added mass must be included.
The shear response is not affected by the entrained fluid for the square lattice. The
FSI solution yields a fast pressure mode for ω̄ < 1 and two pressure modes for ω̄ > 1.
Wavemodes corresponding to the labels in Fig. 2 are shown in Fig. 3. The pressure
wavemode (a) has the same polarization for ω̄ < 1 and ω̄ > 1. For ω̂ = ω/ωc < 1, the
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Figure 3: Fluid-structure wavemodes corresponding to the wavenumber combinations indicated by the
labels a-f in Fig. 2. Solid and dashed lines denote the deformed and initial configurations respectively.

pressure distribution within the pores is uniform and only odd modes of the cell walls are
excited.

A study of two pressure wavemodes in Γ−X direction, namely (a) and (b), represents
the main topic of the present paper. Specifically, the qualitative shape of the wavemodes
allows us to study dynamic behavior in simplified macro-mechanical model (sec. 2.2).
One may notice that deformations of two pressure wavemodes are of the same type and
polarization but with the different phase and group velocities. The close up comparison
of these two wavemodes in the coexistent frequency range is shown in the Fig. 4(a),(b).
Fig. 4(a) verifies the fact that two wavemodes differs qualitatively by a rigid body motion
shift ∆φ.

Figure 4: A close-up comparison of two pressure wavemodes from Fig. 3. Normalized but not shifted
wavemodes are shown in (a), where ∆φ denotes the shift. Wavemodes shifted to the same origin are
shown in (b). Red solid line is a fast p-wavemode, and black dashed line is a slow p-wavemode.

One can write the speed of sound in the entrained fluid as c0 = fc · cair0 , where cair0 is a
speed of sound in air, and fc is a variable factor. Then by changing fc from 0.1 to 10, one
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obtains the band structures shown in the Fig. 5. I can be mentioned that change of speed

Figure 5: Band structure evolution with the growth of speed of sound in the entrained fluid.

of sound in the fluid affects the slow pressure wavemode, whereas it does not influence the
fast pressure wavemode at all. Therefore, we preliminary conclude that the fast pressure
wavemode is determined by structural components and it is not determined by the fluid.

Further in the paper we consider air as an entrained gas in the cell and we fix the
relative density value at ρ∗ = 0.04.

2.2 Analytical model

A close-up comparison of two pressure wavemodes in coexistent frequency range (pro-
vided by the Fig. 4), and the observation done from the Fig. 5, we propose a macro-
mechanical model composed of Euler-Bernoulli beam with an average pressure force Pb

acting on it. The force Pb is introduced based on the hydrostatic-like behavior of the
entrained fluid [13]. The presence of axially displaced solid frame components is given by
the boundary condition on the shear force at one of the ends of the beam, say at x = 0.
Effective stiffness of the shear springs is k̂, which represents the rigidity of the horizontal
beam-walls. The other end of the beam is constrained to behave in the same way. The
model is shown in the Fig. 6. Consider L to be the length of the beam, therefore for
x ∈ [0, L] one can define corresponding transversal displacements ŵ(x, t) which is the
function of space and time.

The change in pressure can be described as an external distributed force over the
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Figure 6: Macro-mechanical model with fluid force Pb and shear spring with effective stiffness k̂.

beam’s face. The difference of volumes resultant from structural displacements creates
the pressure gradient, which is a constant in space and can be written as

Pb = −β̂∆V

V
= − β̂

L2

∫ L

0

ŵ(x, t)dx. (2)

Hence we can write the integro-differential equation of motion with respect to unknown
beam’s displacement function ŵ(x, t)

EI
∂4ŵ(x, t)

∂x4
+ ρsA

∂2ŵ(x, t)

∂t2
− Pb = f̂(t), (3)

where f̂(t) is a distributed external force applied.

2.3 Characteristic equation

If one assumes harmonic motion

ŵ(x, t) = w(x)eiωt, f̂(t) = feiωt, (4)

and divides both sides of Eq. (3) on EI, the governing system becomes

w′′′′(x)− α4w(x) +
β̂

EIL2

∫ L

0

w(x)dx = f/EI, (5)

where α4 = ω2(ρsA)/(EI). Eq. (5) can be solved by considering that the is a definite
integral with constant limits of integration. Differentiating Eq. (5) by the spatial variable
leads to homogeneous fifth-order ODE, whose general solution contains five unknown
constants

w(x) = C1 sinαx+ C2 cosαx+ C3 sinhαx+ C4 coshαx+ C5. (6)

Substituting this solution back into Eq. (5) and assuming f = 0, one determines one
of the constants, say C5. Therefore the general solution to Eq. (5) would contain four
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constants, and should satisfy to the following four boundary conditions

w′(0) = 0,

w′(L) = 0,

w(0) = w(L),

−EIw′′′1 (0) = −k̂w(0),

(7)

which physically mean that we restrict rotations at the ends of each beam, and we couple
the shear forces at the ends with transversal displacements through special shear springs
characterized by stiffness k̂. Inducing the boundary conditions Eqs. (7) leads to homo-
geneous linear system of four equations with four unknowns. In order to have nontrivial
solution to the latter system, one has to set the determinant of this system to be zero. The
resultant equation is known as characteristic equation, which solution gives the eigenfre-
quencies of macro-mechanical model. In accordance with Eqs. (5),(7) the characteristic
equation in the studied case is

Lα(EILα4 − β̂)k̂ + Lα(−EILα4 + β̂)k̂ cosLα coshLα +

(EILα4(EILα4 − β̂)− 2β̂k̂)

[
2 sinLα sinh2 Lα

2
+ (cosLα− 1) sinhLα

]
= 0.

(8)

For a unit cell with L = 1 m, h = 0.01 m, E = 1 KPa, and entrained air, first seven
roots are given by Eq. (9) respectfully. The corresponding modeshapes can be found by
solving Eqs. (7) for each eigenvalue, which lead to a problem of finding a nullspace of a
corresponding characteristic matrix. Since the rank of this matrix is reduced by unity at
each eigenvalue, one can find a corresponding modeshape with normalization of resultant
displacement function by the free constant. For example, first nonzero modeshape in
comparison with the wavemodes from Fig. 4(c) is shown in the Fig. 7.

αLair =



0
3.8204
6.2832
7.8532
12.5664
14.1372
18.8496


(9)

2.4 Wave analysis

One can notice that system of Eqs. (5),(7) does not contain the information on the
wave propagation. Even though the first modeshape of analytical model is qualitatively
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L

Figure 7: Analytical modeshape (blue solid line) with β correspondent to air, in comparison with numer-
ical wavemodes from Fig. 4 (red solid and dashed black lines denote fast and slow p-waves, respectfully).
Each modeshape is normalized by quarter of its maximal displacement.

the same as the p-wavemodes from FE model, the wave analysis should be done in order
to evaluate dynamical characteristics of the system, such as phase and group velocities of
the wave. Our approach would be based on matrices analysis of FE system. Assuming
hydrostatic-like behavior of the pressure acting on the surface of the walls, and similarly
to the representation of Pb in Eq. (2), one can rewrite FE stiffness matrix from Eq. (1) as

[K] =

[
K11 + βΥ K12 − βΥ
K21 − βΥ K22 + βΥ

]
, (10)

which corresponds to the global vector of displacements consists of left and right sides’
displacements. Here Kij is an ij-minor of correspondent structural stiffness matrix, β is
an effective bulk modulus, and Υ is a matrix full of ones in order to provide an average
force. Mass matrix can be represented in the similar way but with no β terms, since fluid
acts like an effective spring and contributes stiffness only.

Note that structure only case can be derived from condition β = 0. Denote the
correspondent stiffness matrix as [Ks]. Then, applying symmetry conditions from Bloch
theorem and assuming plane harmonic wave, reduced stiffness matrix can be presented in
the following form

[K̃f ] = [K̃s] + βΥ(1− cosµL) = [K̃s] + β̂Υ, (11)

where
β̂ = β(1− cosµL) (12)

is a function of a wavenumber µ. Eq. (11) provides the structure of wavenumber con-
tribution to the fsi problem. This let us to introduce an effective bulk modulus for the
analytical model from sec. 2.2. An effective stiffness of the shear spring, which represents
the rigidity of the wall parallel to the wave propagation direction (Γ−X), can be written
similarly as

k̂ = k(1− cosµL) =
EA

L
(1− cosµL). (13)

Plugging Eqs. (12),(13) back to characteristic equation Eq. (8), one obtains dispersion
relation, which relates wavenumber µ to the frequency of the coupled system ω. It is
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worth notice that this dispersion relation is derived in more simple way compared to
straightforward approach of applying wave conditions on displacements and forces directly
for the analytical model.

Our current state of work is to explain the coexistence of two pressure wavemodes in
specific frequency regime by analyzing the resultant dispersion relation. Determining the
exact proof of the slow p-wavemode existence condition requires more precise formulation
of pressure force representation, namely pressure modes should be treated as an infinite
sum of the pressure distributions independent on the structural modes (sec. 7.6 in [15]).
The orthogonality of pressure and structural modes is not provided, therefore one has to
apply the theory of self adjoint operators in order to treat the expansion theorem [16] in
the latter case. This analysis will be uploaded soon.

3 CONCLUSION

This article presents modal and wave propagation analysis of analytical unit cell, which
is proposed as a macro-mechanical analogy of cellular solid with periodic square lattice.
The characteristic equation for an analytical unit cell gives the set of eigenfrequencies,
which correspond to the natural frequencies of the coupled fluid-structure interaction
problem. It gives physical and mathematical origins to Biot’s theory interpretation of
a second pressure wave. The modeshape analysis shows the qualitative similarity of
wavemodes of fast and slow p-waves to the first nonzero modeshape from the proposed
simplified analytical model. Moreover the modal analysis of macro-mechanical model is
complemented by the wave analysis, which is built on the detailed study of the equations
of motion in the matrix form for the coupled fsi problem. The dispersion relation relates
the imposed wavenumber on the system frequency response. The analysis of pressure
modes contribution will be added soon.
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