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E. Oñate, J. Oliver and A. Huerta (Eds)

BLOCH THEOREM WITH REVISED BOUNDARY
CONDITIONS APPLIED TO GLIDE PLANE AND SCREW

AXIS SYMMETRIC, QUASI-ONE-DIMENSIONAL
STRUCTURES

MAURIN F. ∗ AND SPADONI A.†

∗ Laboratory of Wave Mechanics and Multi-Field Interactions (LOMI)
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Abstract. Bloch theorem provides a useful tool to analyze wave propagation in peri-
odic systems. It has been widely used in physics to obtain the energy bands of various
translationally-periodic cristals and with the advent of nanosciences like nanotubes, it
has been extended to additional symmetries using group theory. However, this work is
restricted to homogenous equations. For complexe problems, as engineering structures,
the peridic unit cell are often discretized and Bloch method is restricted to translational
periodicity.

The goal of this paper is to generalize the direct and transfer propagation Bloch method
to structures with in glide plane or screw axis symmetries by deriving appropriate bound-
ary conditions. Dispersion relations for a set of problems is then given and compared to
results from the classical method, if available. It is found that (i) the dispersion curves
are easier to interpret, (ii) the computational cost and error is reduced, and (iii) revis-
ited Bloch method is applicable to structures that do not possess purely-translational
symmetries for which the classical method is not applicable.

1 Introduction

Wave propagation in structures is used in a large range of applications such as non-
destructive evaluation for structural health monitoring [1] and imaging [2]. In the case
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of translational periodic structures, Bloch theorem is used to obtain the behavior of an
infinite medium from the analysis of a single unit cell [3]. It can be used for example to get
the electronic band gaps structures in crystals [4] as well as dispersion relation of railways
[5]. However, in the presence of symmetries other than translation, Bloch theorem in its
original form cannot be used.

These challenges are being addressed with two approaches: in modern physics, Hamilto-
nian systems with analytical or simple potentials can be analyzed via group theory [6], and
find applications among nanotubes, nonoribbons, DNA, proteins or polymers structures.
The presence of symmetries allows significant simplification and reduced computation
cost. The advent of the finite element method (FEM), originally developed for engineer-
ing problems, introduce the ability to analyze highly complex systems. As a result, FEM
is now commonly employed. The presence of symmetries in such formulations is handled
by periodic-boundary conditions. For translation symmetries, the employment of Bloch
theorem is hence a natural extension of FE, and significant research has been devoted to
analyzing wave propagation in infinite system following two different approaches: Assum-
ing harmonic waves (propagating without attenuation), the system can be reduced to an
eigenvalue problem for which, the frequencies are the solutions. This method, referred as
direct, has been especially used by Phani [7] who study band structures of honeycomb
lattices in the Irreducible Brillouin Zone (IBZ). An alternative to this method consist
on using the transfer matrix approach [8], which yields the propagation and attenuation
part of the wave at a given frequency. Initially available for one-dimensional problems,
this technique has been extended to 2D problems for portions of the IBZ [9], and more
recently for the entire IBZ [10, 11]. Both methods however are not immediately extended
to systems with symmetries other than translation.

In this paper, we derive appropriate boundary conditions for glide-plane and screw-
axis symmetric systems for both the direct and transfer-matrix approaches. It follows our
previous work on the dispersion of a post-buckled beam [12], a structure which is glide
symmetric. In [13], a glide symmetric warren truss is considered without mentioning the
symmetry. In the literature, to the best of our knowledge, only helical waveguides with
constant cross sections as multi-wires have been analyzed with the Bloch method [1].
However, our method differs in the choice of the reference coordinate system and it is
generalized to the full screw-symmetric group.

This paper is organized as follows. In Sec. 2, we propose appropriate boundary condi-
tions which reduce unit-cell bases on translation symmetry to simplified subcells according
to the additional symmetries. We demonstrate that these boundary conditions leave the
eigenvalues of the dynamic equation unchanged, in accordance with the present symme-
tries. We then demonstrate in Sec. 3 the applicability of the proposed method in a set of
quasi-one dimensional problems, with respect to wave propagation.
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2 Reduced Bloch Theorem

Wave propagation in periodic structures can be investigated through the analysis of a
unit cell and the application of Bloch theorem [3, 7, 9]. The motion of a linear, periodic
domain resulting from uniaxial wave propagation may be expressed as follows:

dn = d0(µ(ω))eµn, (1)

where dn denotes the displacement vector of cell n within the periodic assembly, and
d0 is the displacement vector within the reference cell. The propagation constant µ is
a complex number (µ = δ + iε, i =

√
−1) where the real and imaginary parts represent

respectively the attenuation and phase constants. Given the periodicity, the propagation
constant µ is equal to the wave number κ multiplied by the spatial period L such that
µ = Lκ. The governing equation is:

Md̈ + Kd = f , (2)

where d and f are the displacement and forces defined by d = {dTL dTI dTR}T and f =
{fTL fTI fTR}T . The subscripts ( )L, ( )I and ( )R respectively denote the left, internal and
right displacements/forces of a unit cell. Assuming harmonic motion, Eq. (2) gives:

D(ω)d =

DLL DLI DLR

DIL DII DIR

DRL DRI DRR

d = f . (3)

where D(ω) = [K− ω2M] is the dynamic stiffness matrix.
The unit cell shown in Fig. 1a is composed of two arrows and reproduces the infinite

structure by translation symmetries. The same unit cell however has an intrinsic glide-
reflection symmetry (axial-reflection plus translation). In the same manner, the unit cell
of Fig. 1c represents a circle with five arrows and can be obtained from a single arrow
using screw-axis symmetries. In both cases, glide or screw symmetries can be exploited
and the unit cell of Fig. 1b or Fig. 1d are respectively used instead.

To distinguish the different variables defined for the reduced and full unit cell, the

respective superscripts (̂ ) and (̃ ) are used. p is the number of intrinsic reduced unit cells
contained by period of translation (p = 2 for glide symmetry).

Using the full period (Figs. 1a,c) and imposing periodicity conditions on the generalized
displacement and equilibrium conditions on the generalized forces yields:{

dL
fL

}
= e−µ̃

{
d̃R
−f̃R

}
, (4)

where µ̃ = pLIm(κ) and L is the period length of the reduced unit cell. The equivalent
relation for the reduced period (Fig. 1b) is:{

dL
fL

}
= e−µ̂

{
d̂R
−f̂R

}
= e−µ̂

[
Ro 0
0 Ro

]{
d̃R
−f̃R

}
, (5)
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Figure 1: Unit cell in full black line in terms of the classical (a, c) and revisited (b, d) Bloch theorem
taking into account 2D glide reflection (b) or screw (d) symmetries. Figures are shown in the plane but
a third direction can exist.

where 0 is the zero matrix, µ̂ = µ̃/p, and Ro = Io⊗R, with ⊗ the Kronecker product. R

is an orthogonal (R−1 = RT ) change of basis matrix from d̃R to d̂R denoted by Ry and Rθ

respectively in the case of glide symmetries of plane (x, z) (Fig. 1b) and screw symmetries
(Fig. 1d) such that for a wave propagating in the x direction R is:

Ry =


1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

 , Rθ =


1 0 0 0 0 0
0 cos θ sin θ 0 0 0
0 − sin θ cos θ 0 0 0
0 0 0 1 0 0
0 0 0 0 cos θ sin θ
0 0 0 0 − sin θ cos θ

 . (6)

These matrices are given for 3D elements with 6 degrees of freedoms (dofs) per node
(3 displacements plus 3 rotations such that [dx dy dz θx θy θz]). For example, if the
formulation is beam element in the plane (i.e. Fig. 1a), only the first, second and last
rows/columns of Ry are kept.

The angle θ in the screw symmetry is the angle of rotation but is also the period of
the propagation constant. Indeed, since the period of the µ̃ is 2π, the period of µ̂ = µ̃/p
is 2π/p = θ. For glide symmetry, the reduced period is π.
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2.1 Direct method

Using Eq. (5), d̃ = {dTL dTI d̃TR}T can be expressed in terms of a reduced displacement
vector d(r) = {dTL dTI }T :

d̃ =

 Ido 0
0 Idi

RT
o e

µ̂ 0

d(r) = Ẑd(r), (7)

where I is an identity matrix of size defined by subscripts; do and di are the number of
dofs by node d multiply by the number of external o and internal i node, respectively.
Assuming the propagating wave without attenuation (µ̂ = iε̂) and no internal forces

(fI = 0), and substituting Eq. (7) into Eq. (3) then multiplying both sides by ẐH , where
H denotes the conjugate transpose, gives:

D̂(r)(ω, µ̂)d(r) = 0, (8)

where D̂(r)(ω, µ̂) = ẐHD̂(ω)Ẑ. Given the periodicity of the medium, ε̂ =Im(µ̂) ∈ [−π π],
and associated values of ω are found by solving the eigenvalue problem of Eq. (8).

2.2 Inverse method

Instead of fixing the wave number and looking for the associated frequency, one can fix
the frequency and compute the propagation constant µ̂ for 1D problems [8]. In absence
of internal forces, Eq. (3) can be recast as:

D̂(ω)

{
dL
d̃R

}
=

[
D̂LL D̂LR

D̂RL D̂RR

]{
dL
d̃R

}
=

{
fL
f̃R

}
, (9)

with D̂XY = D̂XY − D̂XID̂
−1
II D̂IY ({( )X , ( )Y } ∈ {( )L, ( )R}). Eq. (9) can be rearranged

to define a relation between opposite sides of the unit cell:{
d̃R
−f̃R

}
=

[
−D̂−1LRD̂LL D̂−1LR

D̂RRD̂
−1
LRD̂LL − D̂RL −D̂RRD̂

−1
LR

]{
dL
fL

}
= T̂

{
dL
fL

}
, (10)

where T̂ is the transfer matrix. Combining Eqs. (5) and (10) gives:[
[I2 ⊗Ro] T̂ − Idoeµ̂

]{dL
fL

}
= 0. (11)

Eq. (11) is an eigenvalue problem which gives 2do complex conjugate eigenvalues eµ̂ cor-
responding to frequency ω.
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Figure 2: Repercussions of glide symmetry on dispersion relations of post-buckled structures. Full (a)
and revisited (b) unit cells with respective band structures (c) and (d). Full lines in (c, d) denote the
solution in the first Brillouin zone (BZ), while dashed-black lines denote solutions in the second BZ.

3 Results

In this section, a set of different examples is given to compare the classical Bloch
theorem to its revisited version. For beam elements, the following notation and numerical
values are used in this section: the beam cross-section is square of thickens t = 1 mm,
area A = t2 and area-moment of inertia I = t4/12; E = 200 GPa is the Young modulus,
and the density is ρ = 8100 Kg m−3.

3.1 Post-buckled beam

A post-buckled beam (Figs. 2a,b) is an example of geometry with glide symmetries
which has been studied in [12]. In the present case, we restrict ourselves to the global
trend of the curve to compare the classical Bloch theorem to its revisited version with
the direct method. For more details on the dispersion of post-buckled structures with
interpretations of the different modes, including a analyze of the influence of pre-stress,
type of supports, and buckling level, please refer to [12].

The band structure for the translational unit cell (Fig. 2c) gives dispersion curves
belonging to the interval ε̃ = 2LIm(κ) = [−π π]. But ε̃ is not restricted to this interval
and the full dispersion is obtained by shifting the curves in full line by 2qπ (q ∈ N)
resulting in the dashed lines in Fig. 2c [3]. Dashed lines however do not provide any
additional information given the periodicity of the dispersion relations. In the dispersion
from the revisited Bloch version (Fig. 2d), the interval is still ε̂ = LIm(κ) = [−π π] but
the period of the propagation constant is π. When full lines are shifted by the period
qπ, new roots appear in the interval ε̂ = [−π π] (dashed line) recovering the dispersion
of the full periodicity (Fig. 2c) using ε̂ = ε̃/2. One comment is due comparing the full
line curves of Fig. 2c to Fig. 2d. In Fig. 2c, it is not clear if the two branches (ε̃ ≥ 0)
of the dispersion curves are due to the same phenomenon, while this is clear in Fig. 2d
due to the continuity of the curve. Finally, the revisited Bloch theorem produces band
structures that are easier to interpret, as we emphasize in the next example.
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3.2 Helix in a plane

In this example, dispersion of a wave propagating in a plane helix (2D) is analyzed.
Modeling the helix by a slender curved beam of radius r, an analytical dispersion equation
relating the wave number κ to the frequency ω can be derived from beam theory [14]:

κ6 −
(
κ20 +

2

r2

)
κ4 −

(
β4 +

κ20
r2
− 1

r4

)
κ2 +

(
κ20 −

1

r2

)
β4 = 0, (12)

where κ20 = ω2 ρ
E

and β4 = ω2 ρA
EI

. The goal of this part is to recover Eq. (12) using FEM
and Bloch theorem. For this purpose, a portion of 360◦ of the infinite helix corresponding
to the periodicity by translation is discretized using p beam finite elements [15]. This
“open ring” is used as a unit cell for the classical Bloch theorem and dispersion curves are
shown in Figs. 3a,b for the direct and inverse method. The helix is screw symmetric as
well with a periodicity that can be reduced to an infinitesimally small portion. However,
in the present case, since we are using FE, the minimum size for the screw periodicity
is one beam element. Using this reduced unit cell, the revisited Bloch theorem can be
used choosing the rotation matrix Rθ (Eq. (6)) with θ = 360◦/p, and dispersion curves are
shown in Figs. 3c,d for the direct and inverse method. A discussion on the different modes
interpretations can be found in [14]. For a comparison between the classical (Figs. 3a,b)
and the revisited (Figs. 3c,d) Bloch theorem, three main comments are in order:

• Band structures resulting from the revisited Bloch theorem are easier to interpret.
Indeed in Fig. 3a for example, the full line in folding describing the dispersion in
the first Brillouin zone (BZ) or its extension to other BZ (dashed lines) are both
not clear compared to the dispersion obtained with the revisited Bloch theorem
(Fig. 3c).

• Results from the revisited Bloch theorem are more accurate. Indeed, focusing on
Fig. 3b, the branch with the largest real part is wrong for ω/ω0 ≥ 3 and spurious
results are present in the imaginary part for ω/ω0 ≈ 8 and ω/ω0 ≥ 10. This is due
to the fact that the matrix to be inverted in the classical Bloch theorem is p (p = 64
in Fig. 3) times larger, increasing the probability to get computational errors.

• The last advantage arising from the matrix size is computation time. Indeed the
eigenvalue problem or the matrices to invert are p times smaller, respectively in
the direct and inverse method. Moreother the computation cost increase in the
classical Bloch theorem when the discretization is refined (p increase) whereas it
remain unchanged for the revisited Bloch theorem as shown in Table. 1.

In addition to these advantages, we conclude by emphasizing that the plane helix is a
very particular type of screw symmetry since the translation is null. This means that the
only way to get a dispersion direction is along the curvilinear beam and so µ̂ = µ̃

p
= 2πr

p
κ.

In general, helixes are 3D structures and due to the fact that Bloch theorem is restricted
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Figure 3: Dispersion relation of the plane helix computed with the classical (a, b) and revisited (c, d)
Bloch theorem using the direct (a, c) and indirect (b, d) method and a discretization of p = 64. Full
lines denote the solution in the first BZ, while dashed lines denote solutions in the others BZ. The +
are results from the analytical dispersion (Eq. (12)). These figures are plotted for r = 10t as in [14] and
ω0 = π2

√
E/ρ.

Table 1: Computation time of the revisited and classical Bloch theorem for a set of several levels of
discretization with p the number of element by portion of 360◦ of the helix.

Computation time (s) Revisited Classical
p ∀p 4 16 64 256

Direct method 1 14 21 111 2024
Inverse method 0.22 0.40 0.54 1.09 3.15

to quasi-one dimensional structures, the dispersion is usually obtained along the screw
axis, as shown in the next example.
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Figure 4: Tetrahelix structures with different unit cells: a single tetrahedron (a), an assembly of three
tetrahedra (b) and a cut of length h0 along and perpendicular to the screw axis (c). The letters “L” and
“R” denotes the left and right sides of the unit cell, if existing.

3.3 The Boerdijk-Coxeter helix (tetrahelix)

The Boerdijk-Coxeter helix also called tetrahelix is a particular helical structure built
from stacking of tetrahedra (Fig. 4a). The tetrahelix is a screw symmetric structure: a
translation along its axes by h0 = a/

√
10 (a the length of a tetrahedron edges) coupled to

a rotation of θ0 = arccos (−2/3) [16]. Since θ0 is not a fraction of π, the tetrahelix does
not possess pure translational symmetry and it is an example of structures where only the
revisited Bloch theorem can be applied; the classical Bloch method cannot be employed.

The first step in Bloch theorem is to define the unit cell and a first guess would be to
use one tetrahedron (Figs. 4a). However, the tetrahedron possesses four sides, all linked
together, meaning that some nodes are shared by both the right and left sides which is
not possible (wave number equal to zero). To overcome this problem, instead of using
one tetrahedron as a unit cell, a possibility is to use an assembly of three of them as
shown in Figs. 4b, and taking the rotation matrix Rθ (Eq. (6)) defined with θ = 3θ0.
The dispersion obtained from the direct method is shown in Fig. 5a in full lines. Beside
a physical interpretation of the results which is not of interest in this paper, we notice
that some curves at their extremities (µ̂ = 0 or µ̂ = π/3) are joined (see zooms). Since
this observation is similar to previous ones (Figs. 2c and 3a), we expect the unit cell to
be reducible by three, to match the period of the screw symmetry. Indeed, this reduction
can be archived taking a portion of the helix of length h0 cut along and perpendicular to
the screw axis as shown in Figs. 4c. The new dispersion relation is shown in Fig. 5b and
as expected, the superposition of Fig. 5a and Fig. 5b overlaps perfectly.

Finally, note that in Fig. 5, there is a particular point for which ω = 0 with µ̂ = θ0 6= 0
(Fig. 5b). This is not the result of a wave propagating without frequency but this is
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Figure 5: Dispersion relation of the tetrahelix from the revisited Bloch theorem with the direct method
of the unit cell shown in Fig. 4b (a) and Fig. 4c (b). Full lines denote the solution in the first BZ, while
dashed lines denote solutions in the others BZ. Dispersion curves are obtained along the screw axis in
terms of µ̂ = h0κ and with the following parameters: a = 0.1 m and ω0 =

√
EA/ρ/a2.

consequence of the fact that the screw angle is not a fraction of π. As it will be shown in
an upcoming paper, it is possible to give an alternative representation of Fig. 5 where all
dispersion curves start from the position ω = µ = 0.

4 Conclusions

In this paper, we revisit boundary conditions in Bloch theorem to account for glide
and screw symmetries. Both the direct and the transfer version are addressed. After
comparing dispersion relation resulting from the classical and revisited method for a set
of different problem, it is found that (i) the dispersion curves are easier to interpret,
(ii) the computational cost and error is reduced, and (iii) the revisited Bloch method is
applicable to structures that do not possess purely-translational symmetries for which the
classical method is not applicable.
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