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Montréal, Canada.
e-mail: francois.morency@etsmtl.ca, web page: http://www.cimne.com/

†IMB, UMR 5251 et Inria Bordeaux Sud-Ouest
Université de Bordeaux
F-33400 Talence, France

e-mail: heloise.beaugendre@math.u-bordeaux1.fr

Key words: Oscillating-airfoil, Vortex in Cell, Penalization, Aerodynamic forces

Abstract. The fluid-solid interaction method proposed in this work is formulated for
a laminar flow modeled by the incompressible Navier-Stokes equations in which we con-
sider the presence of a rigid moving solid Si. The model is formulated inside an immersed
boundary method based on a penalization technique to account for rigid body. The pe-
nalization technique extend the velocity field inside the solid body and use a penalty term
to enforce the rigid motion inside the solid. The method is used to study the case of
an oscillating airfoil in large flapping motion. A method appropriate for the calculation
of forces and angular momentum with penalized equations method is proposed and val-
idated. The effect of geometries on the aerodynamic forces and the angular momentum
is investigated, especially the airfoil thickness. For propulsion and power extraction, the
results are similar to the one available in literature. As the airfoil thickness increase the
maximum values decrease slightly, but the airfoil shape as only a small effects on results.

1 INTRODUCTION

Computations by classical computational fluid dynamics (CFD) codes use body fitted
grid to discretize the computational domain. On the other hand, flow simulations by the
immersed boundary methods (IBM) use a grid that does not follow the body geometry
of the body. Most of the difficulties associated with grid generation are avoided. IBM
can easily model flows around complex geometries in large motion[1]. The Cartesian
grids used with the IBM limits the application to Euler or Laminar flow, unless local grid
refinement strategy[2] and specific turbulent wall model are used[3]. IBMs are seldom
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used to solve aeronautical flows, although methodological advances allow simulation of
compressible flows at high Reynolds numbers[4]. The penalization method used in this
work is a special case of the IBM, where bodies are considered as porous media with a
very small permeability[5]. The penalization method has the advantage of avoiding the
tasks of tracking the fluid solid interfaces into the grid and the related interpolation of
the forcing term.

Because IBMs can easily handle large motion, they are used to simulate flow around
small size unmanned aerial vehicule that operate in low Reynolds number regime. At
low Reynolds number, fixed wing geometry performances decrease. A solution that worth
investigation is the use of unconventional concept such as flapping wings to build small
aircraft that can fly efficiently[6, 7]. Flapping motion can also be used to extract energy
from wind or river[8]. There is several parameters that determine the propulsion effi-
ciency in flapping motion: the heaving amplitude, the pitching amplitude, the frequency
and the geometry. With IBMs, the study of the geometry effects on the propulsion or
power extraction is relatively easy. Until better shapes are devised, classical NACA airfoil
geometries are a good starting point to explore the design space.

In this paper, we propose to extend the use of an IBM [9] that combines the advantage
of the penalization and of the Vortex-in-Cell (VIC) methods, namely no restriction on
CFL number, for simulations of airfoils in flapping motion. The first specific objective is
to validate the force and momentum calculations within the IBM. Force calculations at
interface is always a challenge in IBM because the mesh does not follow the fluid solid
interface. A second specific objective is to study the geometry effects, and especially
geometry thickness, on the power extraction and propulsion regime. First, the penalized
Navier-Stokes equations are presented. Then the numerical method based on VIC scheme
is explained together with the strategy used to compute the force and moment exerted by
fluid on airfoil. Finally, the oscillating airfoil test case is presented, results are validated
against literature and geometry effects are studied.

2 Penalization

The fluid-solid interaction flow model proposed in this work is based on an incompress-
ible laminar Newtonian flow around a body considered as rigid (without any deformation)
and delimited by level-set functions. The mass and momentum conservation equations
are

∇ · u = 0 in Ω (1a)

∂u

∂t
+ (u · ∇) u− ν∇2u +

1

ρ
∇p = 0 in Ω. (1b)

where u is the velocity vector, ν = µ/ρ is the kinematic viscosity, ρ is the density, and
p is the pressure. Now we consider, in Ω, the presence of a rigid moving solid Si. The
boundary of Si is computed from a level set function Φsi . Φsi is the signed distance
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function to Si, typically Φsi will be negative inside the object and positive outside. The
penalization extend the velocity field inside the solid body and solve the flow equations
with a penalization term to enforce rigid motion inside the solid as proposed by [10].

Let usi be the rigid moving body velocity vector of Si. Inside Si, the momentum
equation becomes u = usi and remains equation (1b) outside Si. This is summarized
as follows: given a very large penalization parameter, λ � 1 and denoting by χsi the
characteristic function of the solid Si is χsi = 1 inside Si and χsi = 0 outside Si.

The model equation is given by

∂u

∂t
+ (u · ∇) u− ν∇2u +

1

ρ
∇p = λχsi(usi − u) for x ∈ Ω and t > 0, (2)

coupled with the incompressible mass conservation (1a). This model can easily be gener-
alized to multiple rigid bodies Si.

To solve our governing equations the following strategies have been chosen:

1. A vortex formulation of our governing equations is used: this formulation is espe-
cially adapted to study oscillatory motion that create large flow separation around
aerodynamic bodies.

2. A vortex in cell (VIC) scheme is used to solve the equation: this scheme offers less
CFL restrictions.

3. A time splitting algorithm allows to take into account the specific requirement of
each equation term, for example the implicit treatment of the penalization term for
accuracy purpose.

Let us consider the penalized Navier-Stokes equation in the vorticity formulation by
applying the curl operator to equation (2), with ω = ∇× u in Ω

∂ω

∂t
+ (u · ∇)ω = (ω · ∇) u + ν∇2ω + λ∇× [H(Φsi)(usi − u)] (3)

∇ · u = 0 (4)

3 VIC SCHEME

The Vortex-In-Cell (VIC) scheme computes the non linear advection by tracking the
trajectories of the Lagrangian particles through a set of ODEs. An Eulerian grid is adopted
to solve the velocity field, the diffusive term, and the penalization term. Given D/Dt(·),
the material derivative, and expanding the penalization term, equation (2) becomes

Dω

Dt
= (ω · ∇) u + ν∇2ω + λH(Φsi) (ωsi − ω) + λδ(Φsi) [∇(Φsi)× (usi − u)] , (5)
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where δ(Φsi) is the 1D Dirac delta function and ωsi = ∇× usi .
The domain Ω is meshed using a uniform fixed cartesian grid. We denote the time step

∆t, such that tn = n∆t and Φn
si , un, ωn are grid values of the level set functions, velocity,

and vorticity. The vorticity field ω is represented by a set of particles

ω(x) =
N∑
p=1

vpωpζ (x− xp) , (6)

where N is the number of particles, xp the particle location, vp and ωp are the volume
and the strength of a general particle p. ζ is a smooth distribution function, such that∫
ζ(x) dx = 1, which acts on the vortex support.
A viscous splitting algorithm solve the equation (3). Each time step ∆t is solved using

three sub-steps as follows.

1− Advection:
Dω

Dt
=
∂ω

∂t
+ (u · ∇)ω = 0. (7a)

2− Stretching and diffusion:
∂ω

∂t
= (ω · ∇) u + ν∇2ω. (7b)

3− Penalization term:
∂ω

∂t
= λ∇× (H (Φsi) (usi − u)) . (7c)

sub-step 1: advection
Grid vorticity above a certain cut-off value will create particles at grid point locations [11].
Then, using equation (7a), particles are displaced with a fourth order Runge-Kutta time-
stepping scheme. From the new vortex particles’ location, the vorticity field is remeshed
on the grid by the M ′

4 third order interpolation kernel introduced by [12].
sub-step 2 : stretching and diffusion
The equation to solve for vortex stretching and viscous contribution is given by equa-
tion (7b) which is approximated onto the grid with an Euler explicit scheme, while the
Laplacian is evaluated, with a second order accurate standard five points stencil.
sub-step 3: penalization
The penalization term is evaluated using equation (7c). In our simulations, λ is fixed to
108/∆t. An implicit Euler time discretization is used for the penalization term in the
Navier-Stokes equation:

un+1 =
u? + λ∆tH(Φsi)u

n
si

1 + ∆tH(Φsi)
. (8)

where u? is the velocity after sub-step 2. The vorticity field at tn+1 is evaluated on the grid
by taking the curl of the velocity, ωn+1 = ∇×un+1, and computing the derivative through
the second order centred finite differences approximation. This method is unconditionally
stable.

Since the incompressible velocity field is divergence-free, from the vector field theory,
we can define a vector potential ψ such that u = ∇ × ψ. The vector potential ψ is a
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3D extension of the stream function ψ. This potential vector is imposed to be solenoidal
∇·ψ = 0 and given ωn+1 the updated vorticity field, the stream function field is computed
by solving the linear Poisson equation ∇2ψ = −ω on the cartesian grid with boundary
conditions on ∂Ω. In equation (8), u? is computed with ω? the vorticity resulting from
sub-step 2.

3.1 Aerodynamic forces on solid

The penalization term in equation (3), the last term on the right hand side, can also
be considered as being the rigid body effect on fluid. At each time step, the penalization
term forces the velocity inside the rigid body Si to be equal to usi . The momentum
change caused by the penalization is computed by

∆m =

∫
Si
ρ(u− usi)dx. (9)

This change of momentum happens during one time step ∆t. Thus the force is F = ∆m
∆t

.
In a similar way, the angular momentum change created by the penalization term is

∆mθ =

∫
Si
ρr× (u− usi)dx. (10)

The instantaneous pitching moment is T = ∆mθ

∆t
.

In 2D flows, the drag, lift and pitching moment coefficients are defined respectively as

Cx =
Fx

1/2ρu2
refc

; Cy = Fy
1/2ρu2ref c

; Cm =
T

1/2ρu2
refc

2
. (11)

where the x axis is aligned with the far field velocity vector uref , the y axis is perpendicular
to the far field velocity vector and c is the airfoil cord.

4 OSCILLATING AIRFOIL

In this test case, we model an oscillating wing experiencing simultaneous pitching θ(t)
and heaving h(t) motions. The infinitely long wing is based on a NACA 0015 airfoil. The
pitching axis is located along the airfoil chord at the position (xp, yp) = (1/3, 0). First
one of the motions described by Kinsey and Dumas [8] is use to validate our numerical
method. The airfoil motion is defined by the heaving h(t) and the pitching angle θ(t)
defined as follows: {

θ(t) = θ0 sin (ωt)
h(t) = H0 sin (ωt+ Φ)

(12)
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where H0 is the heaving amplitude and θ0 is the pitching amplitude. The angular fre-
quency is defined by ω = 2πf and the phase difference Φ is set to 90o. The heaving
velocity is then given by:

Vy(t) = H0ω cos(ωt+ Φ) (13)

Based on the imposed motion and on the upstream flow conditions, the airfoil experi-
ences an effective angle of attack α(t) and an effective upstream velocity Veff (t) defined
by {

α(t) = arctan(−V y(t)/U∞)− θ(t)
Veff (t) =

√(
U2
∞ + V 2

y (t)
) (14)

Depending on θ0, there is two operating regimes: a power-extraction regime and a
propulsion regime.

4.1 Validations against a power extraction and a propulsion case

If we made visible the effective angle of attack α(t) from the apparent trajectory of
the airfoil we can draw the force F acting on the airfoil. F = L + D where L is the lift
force and D is the drag force. If the vertical component L is in the same direction as the
vertical displacement of the airfoil, the flow makes a positive work on the airfoil : this is
a power extraction regime else we face a propulsion regime.

A power-extraction regime corresponding to the parameters Re = 1100, H0/c = 1,
f = 0.14, xp/c = 1/3 and θ0 = 76.33o has been computed, see figure 1 for a motion
sketch. Autovalidation tests using different mesh sizes and different domain sizes were
performed to verify independency of the force predictions, see figure 2. Simulations us-
ing two different domains, one domain referenced as Dom1=[−3 : 8] × [−4 : 4] and the
other one referenced as Dom2=[−3 : 8] × [−8 : 8], have been performed to investigate
boundary conditions effects on the solution. Figure 2(a) demonstrates a very good agree-
ment between the two solutions and then Dom1 is sufficient to obtain a correct solution.
Figures 2(b), (c) and (d) compare Cx, Cy and Cm obtained with three different meshes
corresponding to dx = 5 × 10−3, dx = 2 × 10−3 and dx = 1 × 10−3 and show a grid
convergence of the method. Following those tests the further solutions presented are
obtained using the smaller domain, Dom1=[−3 : 8] × [−4 : 4], and a mesh spacing of
dx = 2× 10−3. To validate our numerical results we check our forces predictions against
the results presented by Kinsey et al. [8]. Results of instantaneous forces, Cx, Cy and
pitching moments Cm, figure 3, for the high-efficiency power extraction case are in good
agreements with Kinsey’s results.

The operating regime of an airfoil oscillating at a given frequency can be change by
varying the pitching amplitude θ0. Therefore, a propulsion regime corresponding to the
parameters Re = 1100, H0/c = 1, f = 0.14, xp/c = 1/3 and θ0 = 20o has also been
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Figure 1: Sketch of the airfoil motion, power-extraction regime, for H0/c = 1, f = 0.14, xp/c = 1/3 and
θ0 = 76.33o.
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Figure 2: (a) Influence of the domain size on calculated forces and momenyt, Dom1 = [−3 : 8]× [−4 : 4],
Dom2=[−3 : 8] × [−8 : 8]. Mesh sensitivity on the drag coefficient (b) on the lift coefficient (c) and on
the pitching moment (d).

selected. The motion description is sketched in figure 4 and the calculated drag coefficient,
lift coefficient and pitching moment are presented in figure 5. Again, the results are in
good agreement with the published results of Kinsey et al. [8].

4.2 Study of the airfoil geometry effect

On the power extraction regime, Re = 1100, H0/c = 1, f = 0.14, xp/c = 1/3 and
θ0 = 76.33o, we study the effect of different NACA airfoil profiles drawn in figures 6
and 8(a) on the forces and pitching moment. The airfoils on figure 6 (a) and 8(a) are
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Figure 3: Power-extraction results on a NACA 0015 airfoil (a) Drag coefficient, (b) Lift coefficient, (c)
Pitching moment.
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Figure 4: Propulsion, for H0/c = 1, f = 0.14, xp/c = 1/3 and θ0 = 20.o.

symmetric, the ones on 6 (b) are cambered.
On figure 7, the forces and pitching moments are compared for four and five digit

NACA geometries. All the curves are similar in shape, however the maximum values
sligthly decrease as the airfoil thickness increases. The six digit airfoil of figure 8(a) is a
laminar airfoil with a design lift coefficient of 0 and should maintain a laminar flow all
over the airfoil. The results are still similar, with higher maximum values when compare
to the reference NACA 0015 airfoil, probably caused by the difference in thickness values.

5 CONCLUSIONS

An IBM based on penalization and VIC methods has been used to study the aerody-
namic forces acting on an airfoil in flapping motion. The aerodynamic forces and moment
are computed from the penalization term added to the momentum equation. Predicted
force and moment agree with literature. The flapping motion has been imposed to sev-
eral airfoil shapes. At this low Reynolds number, geometry effects are small. Generally,
increasing the airfoil thickness decreases the maximum values for the forces and moment.
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Figure 5: Propulsion results on a NACA 0015 airfoil (a) Drag coefficient, (b) Lift coefficient, (c) Pitching
moment.
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Figure 6: NACA airfoil profiles.
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Figure 7: Comparison of forces and pitching moment for different NACA geometries, left: drag coeffi-
cient, middle: lift coefficient, right: pitching moment coefficient.
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Figure 8: Comparison between a NACA 0015 airfoil and a NACA 641 − 012 a=1.0 airfoil.
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