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1 Introduction

First industrial tensile roof structures have been constructed about one century ago,
Drew [16]. Development on the particular case of tensile membrane structures has been
performed since about the 1950s, Frei et al. [1], [5], [6], [7], [8]. Intensive research on
computational methods for the design of membrane structures was perfomed in the 1970s,
Weitgespannte Flaechentragwerke [9], [10], Zerning [11], Bubner et al. [12], Weitgespan-
nte Flaechentragwerke [13], Bubner et al. [14], Brinkmann [15]. Reviews on membrane
structures from the beginning until the 20th century are e.g. presented by Drew [16], [20],
Hoppe [19], Berger [17], Schock [18]. Nowadays membrane constructions are shown by
e.g. Renner [21], Apelmann et al. [22], Goeppert [23], Cremers et al. [24], Seel et al. [25].
Current development of adaptive light weight structures is shown e.g. by Neuhaeuser et
al. [26]. Sophisticated numerical methods for to model membrane structures with regard
to large deformation have been developed, Trostel [6], Linkwitz et al. [27], Bufler [28],
Bletzinger et al. [29], [2], Wuechner et al. [30]. Wuechner [31], Linhard [32] show re-
cent development on form finding for membrane structures. Corte et al. [33], [34], Corte
[35] show a force equilibrium based approach on weak [33] and strong [34], [35] coupling
of fluid-structure interaction between viscous fluids and elastic structures. Corte [36],
[37], [38] shows a consistent approach on fluid-structure interaction for large structural
deformation with evaluation [36], [37] and application to a 3D elastic sail structure [38].

2 Analytic force equilibrium

Membrane structures are characterized by tangential in-plane structural tensile stress
state, Frei [1]. Thereby membranes match the property that their thickness is orders of
magnitude smaller in dimension than surface directions’ dimensions are. Therefore out-
of-plane stresses are neglected when considering membrane force equilibrium. The unde-
formed stress free shape of a membrane constitutes a three-dimensional curved surface
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that experiences nonzero curvature althrough its domain. For regions in the membrane
where curvature approaches orders near zero curvature, out-of-plane structural membrane
stiffness drops drastically and can lead to structural instability within that considered re-
gion. For a computational approach the undeformed stress free shape of a considered
membrane is here modeled by parametric description: Along the surface expansion of the
membrane the two spatial parameters ξ and η are defined. With reference to that defined
ξ − η coordinate system on the membrane a unique definition of the three-dimensional
cartesian coordinates 0x=[0x(ξ,η), 0y(ξ,η), 0z(ξ,η)] gives the three-dimensional shape of
the undeformed stress free membrane. From this undeformed stress free state 0 the mem-
brane may experience spatially distributed displacements that are here introduced with
reference to the defined ξ − η coordinate system on the membrane as cartesian displace-
ments t+∆tu=[t+∆tux(ξ,η), t+∆tuy(ξ,η), t+∆tuz(ξ,η)] at some equilibrium state t+∆t. The
tensile force equilibrium within the membrane can be expressed with stress and strain
definitions that refer to the undeformed stress free state 0 of the membrane (2nd Piola-
Kirchhoff stress, Green-Lagrange strain) or with stress and strain definitions that refer to
the stress carrying deformed state t+∆t (Cauchy stress, Euler-Almansi strain), Bletzinger
[2]. Detailed explanation on stress and strain relations depending on the state of reference
(state 0, state t + ∆t) is given by Bathe [3]. The membrane structural force equilibrium
is here expressed as a spatial integration expression over virtual work contributions in its
weak form as

∫ ∫
[Sξξ(ξ, η); Sηη(ξ, η); Sξη(ξ, η)] • [δεξξ(ξ, η); δεηη(ξ, η); δεξη(ξ, η)]T dA(ξ, η)dxnormal(ξ, η)

=

∫ ∫
ρ · [üx(ξ, η); üy(ξ, η); üz(ξ, η)] • [δux(ξ, η); δuy(ξ, η); δuz(ξ, η)]T (1)

+ [f ext
x (ξ, η); f ext

y (ξ, η); f ext
z (ξ, η)] • [δux(ξ, η); δuy(ξ, η); δuz(ξ, η)]T dA(ξ, η)dxnormal(ξ, η)

Here nonlinear membrane stresses are defined as



Sξξ(ξ, η)
Sηη(ξ, η)
Sξη(ξ, η)


 =




C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212


 •




εξξ(ξ, η)
εηη(ξ, η)
εξη(ξ, η)


 (2)

where [(C1111, C1122, C1112); (C2211, C2222, C2212); (C1211, C1222, C1212)] represents a con-
stant elasticity tensor for linear elastic material (C1111=C2222=λ+2µ, C1122=C2211=λ,
C1212=µ, C1112=C2212=C1211=C1222=0 for isotropic linear elastic material, λ, µ: Lame’
constants). Dependence of the elasticity tensor on the state of reference (state 0 or state
t+∆t) is neglected here (see [3] for further details). Nonlinear membrane strain is defined
as




εξξ(ξ, η)
εηη(ξ, η)
εξη(ξ, η)


 =




∂uξ(ξ, η)/∂xξ(ξ, η) + 1
2
{∂uξ(ξ, η)/∂xξ(ξ, η)}2 + 1

2
{∂uη(ξ, η)/∂xξ(ξ, η)}2

∂uη(ξ, η)/∂xη(ξ, η) + 1
2
{∂uξ(ξ, η)/∂xη(ξ, η)}2 + 1

2
{∂uη(ξ, η)/∂xη(ξ, η)}2

{ ∂uξ(ξ, η)/∂xη(ξ, η) + ∂uη(ξ, η)/∂xξ(ξ, η)
+∂uξ(ξ, η)/∂xξ(ξ, η) · ∂uξ(ξ, η)/∂xη(ξ, η)
+∂uη(ξ, η)/∂xξ(ξ, η) · ∂uη(ξ, η)/∂xη(ξ, η)}




(3)
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Along the ξ–η parameter coordinate system on the undeformed initial geometric mem-
brane surface appropriate surface tangential vectors 0gξ(ξ,η)=∂[0x(ξ,η)+0, 0y(ξ,η)+0,
0z(ξ,η)+0]/∂ξ and 0gη(ξ,η)=∂[0x(ξ,η)+0, 0y(ξ,η)+0, 0z(ξ,η)+0]/∂η as well as surface nor-
mal vector 0gnormal(ξ,η)=0gξ(ξ,η)×0gη(ξ,η) with reference to the undeformed stress free
state 0 and t+∆tgξ(ξ,η)=∂[0x(ξ,η)+t+∆tux(ξ,η), 0y(ξ,η)+t+∆tuy(ξ,η), 0z(ξ,η)+t+∆tuz(ξ,η)]/∂ξ
and t+∆tgη(ξ,η)=∂[0x(ξ,η)+t+∆tux(ξ,η), 0y(ξ,η)+t+∆tuy(ξ,η), 0z(ξ,η)+t+∆tuz(ξ,η)]/∂η as
well as surface normal vector t+∆tgnormal(ξ,η)=t+∆tgξ(ξ,η)×t+∆tgη(ξ,η) with reference to
the deformed state t + ∆t are unique.
With unique tangential vectors as above the displacements in local ξ- and local η-direction
are thereby defined as t+∆t

0 uξ(ξ, η)=t+∆tu(ξ,η)•0gξ(ξ,η) and t+∆t
0 uη(ξ, η)=t+∆tu(ξ,η)•0gη(ξ,η)

as well as t+∆t
t+∆tuξ(ξ, η)=t+∆tu(ξ,η)•t+∆tgξ(ξ,η) and t+∆t

t+∆tuη(ξ, η)=t+∆tu(ξ,η)•t+∆tgη(ξ,η) with
respect to the undeformed stress free state 0 and the deformed state t + ∆t of the mem-
brane, respectively. Spatial coordinates of the membrane in local ξ- and local η-direction
are defined as t+∆t

0 xξ(ξ, η)=0x(ξ,η)•0gξ(ξ,η) and t+∆t
0 xη(ξ, η)=0x(ξ,η)•0gη(ξ,η) as well as

t+∆t
t+∆txξ(ξ, η)=0x(ξ,η)•t+∆tgξ(ξ,η) and t+∆t

t+∆txη(ξ, η)=0x(ξ,η)•t+∆tgη(ξ,η), respectively.
Concerning the virtual work expression of the membrane structural force equilibrium in
equation (1) linearized virtual membrane strain is defined as

[δεξξ(ξ, η); δεηη(ξ, η); δεξη(ξ, η)]T (4)

= [∂δuξ(ξ, η)/∂xξ(ξ, η); ∂δuη(ξ, η)/∂xη(ξ, η); ∂δuξ(ξ, η)/∂xη(ξ, η) + ∂δuη(ξ, η)/∂xξ(ξ, η)]T

with virtual displacements δt+∆t
0 uξ(ξ, η), δt+∆t

0 uη(ξ, η) and δt+∆t
t+∆tuξ(ξ, η), δt+∆t

t+∆tuη(ξ, η) ac-

cording to definitions of t+∆t
0 uξ(ξ, η), t+∆t

0 uη(ξ, η) and t+∆t
t+∆tuξ(ξ, η), t+∆t

t+∆tuη(ξ, η) above ap-
propriately.
The analytic form of the membrane area differential is given by d0A(ξ, η)=0gξ(ξ,η)×0gη(ξ,η)dξdη
and dt+∆tA(ξ, η)=t+∆tgξ(ξ,η)×t+∆tgη(ξ,η)dξdη, respectively. Membrane thickness 0xnormal(ξ, η)
and t+∆txnormal(ξ, η), respectively, may vary along the membrane but is to fulfil the re-
quirement that it is neglectably small compared with the membrane dimensions in mem-
brane tangential directions.
With regard to equation (1) that describes the weak form of the membrane force equi-
librium it concludes that the partial derivatives of the sum of virtual work contributions
with respect to the unknown displacement result as zero as a property of the (analytic)
membrane force equilibrium for each position (ξ, η) of the considered membrane; with
this demand it results that (compare with equation (1))
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∫ ∫ 


C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212


 • [[εξξ(ξ, η); εηη(ξ, η); εξη(ξ, η)]T

+ ∂[εξξ(ξ, η); εηη(ξ, η); εξη(ξ, η)]T /∂ux(ξ, η) ·∆ux(ξ, η)

+ ∂[εξξ(ξ, η); εηη(ξ, η); εξη(ξ, η)]T /∂uy(ξ, η) ·∆uy(ξ, η)

+ ∂[εξξ(ξ, η); εηη(ξ, η); εξη(ξ, η)]T /∂uz(ξ, η) ·∆uz(ξ, η)]

• [δεξξ(ξ, η); δεηη(ξ, η); δεξη(ξ, η)]T dA(ξ, η)dxnormal(ξ, η)

=

∫ ∫
[ρ[üx(ξ, η); üy(ξ, η); üz(ξ, η)] + [f ext

x (ξ, η); f ext
y (ξ, η); f ext

z (ξ, η)]

+ ∂{ ρ[üx(ξ, η); üy(ξ, η); üx(ξ, η)] + [f ext
x (ξ, η); f ext

y (ξ, η); f ext
z (ξ, η)]}/∂ux(ξ, η) ·∆ux(ξ, η)

+ ∂{ ρ[üx(ξ, η); üy(ξ, η); üy(ξ, η)] + [f ext
x (ξ, η); f ext

y (ξ, η); f ext
z (ξ, η)]}/∂uy(ξ, η) ·∆uy(ξ, η)

+ ∂{ ρ[üx(ξ, η); üy(ξ, η); üz(ξ, η)] + [f ext
x (ξ, η); f ext

y (ξ, η); f ext
z (ξ, η)]}/∂uz(ξ, η) ·∆uz(ξ, η)]

• [δux(ξ, η); δuy(ξ, η); δuz(ξ, η)]T dA(ξ, η)dxnormal(ξ, η) (5)

with ∆ux(ξ, η), ∆uy(ξ, η) and ∆uz(ξ, η) being the cartesian components of the total differ-
ential of the displacement at (ξ, η) in deformed state t+∆t. Thus equation (5) expresses
the analytic form of the membrane force equilibrium equivavently to equation (1).

3 Discretization

Spatial discretization is performed by 9-node-4-corner elements and quadratic polynomials
for interpolation of translational displacements within each element, Bathe [3]. Time
discretization is performed by application of the HHT-α method, Hilber et al. [4].
For spatial discretization within a 9-node-4-corner element and quadratic polynomials for
interpolation of translational displacements within the respective element the appropriate
interpolation functions

N1(ξe, ηe) = 1
4
(1− ξe)(1− ηe) −1

4
(1− ξ2

e )(1− ηe) −1
4
(1− ξe)(1− η2

e) +1
4
(1− ξ2

e )(1− η2
e)

N2(ξe, ηe) = 1
4
(1 + ξe)(1− ηe) −1

4
(1− ξ2

e )(1− ηe) −1
4
(1 + ξe)(1− η2

e) +1
4
(1− ξ2

e )(1− η2
e)

N3(ξe, ηe) = 1
4
(1 + ξe)(1 + ηe) −1

4
(1− ξ2

e )(1 + ηe) −1
4
(1 + ξe)(1− η2

e) +1
4
(1− ξ2

e )(1− η2
e)

N4(ξe, ηe) = 1
4
(1− ξe)(1 + ηe) −1

4
(1− ξ2

e )(1 + ηe) −1
4
(1− ξe)(1− η2

e) +1
4
(1− ξ2

e )(1− η2
e)

N5(ξe, ηe) = 1
2
(1− ξ2

e )(1− ηe) −1
2
(1− ξ2

e )(1− η2
e)

N6(ξe, ηe) = 1
2
(1 + ξe)(1− η2

e) −1
2
(1− ξ2

e )(1− η2
e)

N7(ξe, ηe) = 1
2
(1− ξ2

e )(1 + ηe) −1
2
(1− ξ2

e )(1− η2
e)

N8(ξe, ηe) = 1
2
(1− ξe)(1− η2

e) −1
2
(1− ξ2

e )(1− η2
e)

N9(ξe, ηe) = (1− ξ2
e )(1− η2

e)

are shown (compare with [3]); ξe and ηe are here element specific parameter coordi-
nates (ξe = −1 . . . 1, ηe = −1 . . . 1). Spatial derivatives ∂N1(ξe, ηe)/∂ξ . . . ∂N9(ξe, ηe)/∂ξ,
∂N1(ξe, ηe)/∂η . . . ∂N9(ξe, ηe)/∂η, ∂∂N1(ξe, ηe)/∂ξ∂ξ . . . ∂∂N9(ξe, ηe)/∂ξ∂ξ, ∂∂N1(ξe, ηe)/∂η∂η
. . . ∂∂N9(ξe, ηe)/∂η∂η, ∂∂N1(ξe, ηe)/∂ξ∂η . . . ∂∂N9(ξe, ηe)/∂ξ∂η, ∂∂N1(ξe, ηe)/∂η∂ξ . . .
∂∂N9(ξe, ηe)/∂η∂ξ (ξ, η: parameter coordinates for membrane shape definition) follow
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Node x y z ux uy uz Gausspoint ξ η Gaussweight ux uy uz

1 -1 -1 0 1 1 1 1 -0.7746... -0.7746... 25
81
≈0.31 0.84 0.84 0.84

2 1 -1 0 1 1 1 2 -0.7746... 0.0000... 40
81
≈0.49 0.60 0.60 0.60

3 1 1 0 1 1 1 3 -0.7746... 0.7746... 25
81
≈0.31 0.84 0.84 0.84

4 -1 1 0 1 1 1 4 0.0000... -0.7746... 40
81
≈0.49 0.60 0.60 0.60

5 0 -1 0 1 1 1 5 0.0000... 0.0000... 64
81
≈0.79 0.00 0.00 0.00

6 1 0 0 1 1 1 6 0.0000... 0.7746... 40
81
≈0.49 0.60 0.60 0.60

7 0 1 0 1 1 1 7 0.7746... -0.7746... 25
81
≈0.31 0.84 0.84 0.84

8 -1 0 0 1 1 1 8 0.7746... 0.0000... 40
81
≈0.49 0.60 0.60 0.60

9 0 0 0 0 0 0 9 0.7746... 0.7746... 25
81
≈0.31 0.84 0.84 0.84

Table 1: unit element nodes with unit nodal displacement and Gausspoint displacement

uniquely.
For time discretization the HHT-α method [4] applies

t+∆tü(ξ, η) = 1/(β∆t2)[t+∆tu(ξ, η)−t u(ξ, η)−∆ttu̇(ξ, η)−∆t2(0.5− β)tü(ξ, η)]
t+∆tu̇(ξ, η) = tu̇(ξ, η) + ∆t[(1− γ)tü(ξ, η) + γt+∆tü(ξ, η)] (6)

to express time discrete acceleration and velocity for a discrete time interval [t; t + ∆t]

(α ∈ [−1
3
; 0], β = (1−α)2

4
and γ = 1

2
− α: time integration parameters).

Introduction of spatial discretization and time discretization into equation (5) leads to
the discrete nonlinear equation system that gives the consistent discrete description of
the stated problem. The discrete nonlinear equation system can be solved in an iterative
manner to eventually obtain the spatially discrete and time discrete unknown displace-
ments [t+∆tuk

x(ξ,η), t+∆tuk
y(ξ,η), t+∆tuk

z(ξ,η)], k = 1 . . . Nk (Nk: number of discrete nodes
in the appropriate finite element discretization). Spatial integration over discrete surface
elements with quadratic polynomials for interplation of translational displacement can be
performed exactly by Gausspoint integration.

4 Evaluation

Evaluation of the discrete system for the case of even in-plane load and for the case of
out-of-plane load on the unit 9-node-4-corner element is performed. Appropriate stiffness
and mass matrix coefficients for the unit 9-node-4-corner element are shown. In-plane
displacement as well as out-of-plane displacement is assessed. The setup of the different
evaluation cases is illustrated in figure 1.

4.1 Boundary displacement: Interpolation

The unit 9-node-4-corner element with nodal coordinates as in table (1) is exposed to
nodal boundary displacement (table (1), central node undisplaced). Spatial integration is
performed by 3×3 Gausspoints with Gausspoint coordinates as in table (1). Interpolated
displacement values at the appropriate Gausspoint coordinates are shown in table (1).

5
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Node x y z ux uy uz

1 -1 -1 0 -1 -1 0
2 1 -1 0 1 -1 0
3 1 1 0 1 1 0
4 -1 1 0 -1 1 0
5 0 -1 0 0 -1 0
6 1 0 0 1 0 0
7 0 1 0 0 1 0
8 -1 0 0 -1 0 0
9 0 0 0 0 0 0

Table 2: unit element nodes with ±1.0 nodal displacement

4.2 In-plane boundary displacement: Stiffness and mass coefficients

The unit 9-node-4-corner element with nodal coordinates as in table (2) is exposed to nodal
boundary displacement as in table (2) with undisplaced central node. Spatial integration
is performed by 3×3 Gausspoints with Gausspoint coordinates as in table (1). Mate-
rial stiffness parameters are Lame’ constants λ=1 and µ=1. Material density is ρ=1000.
Membrane thickness is hZ=1. As an excerpt of the stiffness matrix of the discrete system
of the unit 9-node-4-corner element the displacement-appropriate stiffness matrix coeffi-
cients are shown in table (3) for influence of nodal x-displacement on nodal inner elastic
x-forces. Analogous an excerpt of the stiffness matrix of the discrete system of the unit 9-
node-4-corner element is shown in table (4) for influence of nodal y-displacement on nodal
inner elastic y-forces. Since nodal displacement in z-direction (see table (2)) is identical
to zero the appropriate stiffness matrix coefficients for influence of nodal z-displacement
on any nodal inner elastic forces for the considered unit 9-node-4-corner element (that is
positioned even in the x-y-plane) are identical zero which is not any further listed here.
It is commented here that due to the large nodal displacements compared with the el-
ement dimensions (see table (2)) high amounts of non-symmetry in the stiffness matrix
coefficients appear for coefficients in tables (3) and (4). This non-symmetry appears due
to the application of quadratic interpolation function and their different spatial derivatives
within the considered (unit) 9-node-4-corner element. Consideration of the arrangement
of the different nodes in the 9-node-4-corner element makes obvious that there appears a
regular pattern within the non-symmetry of the stiffness coefficients.
Diplacement-independent mass matrix coefficients for the discrete system of the unit
9-node-4-corner element are shown in table (5) that are valid for influence of nodal x-
acceleration on nodal inertia x-forces as well as for nodal y-acceleration on nodal inertia
y-forces and for nodal z-acceleration on nodal inertia z-forces.

4.3 In-plane boundary displacement: Displacement dependence of stiffness
coefficients

Regarding the non-symmetry in the stiffness matrix coefficients that appears for boundary
displacement as shown in table (2) and that can be seen in tables (3) and (4) the amount
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of non-symmetry in the appropriate stiffness matrix coefficients decreases for smaller
boundary displacement compared with the element dimensions. This is evaluated for ±0.1
nodal boundary displacement as in table (6), for ±0.01 nodal boundary displacement as
in table (7) and for ±0.001 nodal boundary displacement as in table (8). Appropriate
excerpts of the stiffness matrices for influence of nodal x-displacement on nodal inner
elastic x-forces are shown in tables (9), (10) and (11). The percentage of non-symmetry
in the stiffness matrix coefficients is of the same order as the relation between nodal
boundary displacement and element dimensions and decreases approximately linearly with
the nodal boundary displacement.

4.4 In-plane boundary forces: Free corners, fixed edge midpoints

For the four corner nodes being exposed to outward-directed external forces of amount
±0.01 in x- and in y-direction, where edge midpoint nodes and central node are fixed in
displacement, the static solution in corner displacement is given with respect to the appro-
priate equilibrium iteration in table (12) until convergence is achieved; material stiffness
parameters are λ=1 and µ=1, membrane thickness is hZ=1. The static displacement is
converged after four equilibrium iterations and shows outward displacement of the four
corner nodes of amount ±0.005914 in both x- and y-direction.

4.5 In-plane boundary forces: Free corners, free edge midpoints

For the four corner nodes being exposed to outward-directed external forces of amount
±0.01 in x- and in y-direction and for the four edge midpoint nodes being exposed to
outward-directed external forces of amount ±0.01 in x- and in y-direction, respectively,
where the tangential displacement of the four edge midpoint nodes and the displacement
of the central node are fixed, the static solution in corner displacement is given with re-
spect to the appropriate equilibrium iteration in table (13) until convergence is achieved;
material stiffness parameters are λ=1 and µ=1, membrane thickness is hZ=1. The static
displacement is converged after four equilibrium iterations and shows outward displace-
ment of the four corner nodes of amount±0.006330 in both x- and y-direction and outward
normal displacement of the four edge midpoint nodes of amount ±0.002772. Since the
edge midpoint nodes can displace in normal direction to the element edges appropriately
the outward corner displacement of amount ±0.006330 in both x- and y-direction is larger
in magnitude than for the case of fixed edge midpoint nodes (where outward corner dis-
placement is of amount ±0.005914 in both x- and y-direction as above, see 4.4).
In table (14) the static solution for outward-directed external forces of amount ±0.01 in
x- and in y-direction on the four corner nodes and outward-directed external forces of
amount ±0.01 in x- and in y-direction, respectively, where the tangential displacement
of the four edge midpoint nodes and the displacement of the central node are fixed, on
the four edge midpoint nodes is given in corner and egde midpoint displacement with
respect to the appropriate equilibrium iteration until convergence is achieved, where here
material stiffness parameters are λ=1 and µ=1 and membrane thickness is hZ=0.1, i.e.
membrane thickness is 10 times smaller than for the system shown in table (13). Since the
system shown in table (14) has smaller stiffness than the system shown in table (13) the
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converged displacement solution is obtained after more than four iterations (compare with
table (13)). Corner nodes’ displacement shows converged solution of amount ±0.047872
in both x- and y-direction, and edge midpoint nodes’ displacement shows converged solu-
tion of amount ±0.020507 in normal direction to the edges. Comparing systems in tables
(13) and (14), where membrane thickness relation is 1/0.1=10/1, it shows that corner
displacement relation is 0.006330/0.047872=1/7.563>1/10 and that edge midpoint dis-
placement relation is 0.002772/0.020507=1/7.398>1/10, which indicates the nonlinearly
(super-linearly) increasing geometric stiffness of the membrane and thereby nonlinearly
(sub-linearly) increasing displacements for linearly decreasing membrane thickness.

4.6 Out-of-plane central force: Fixed corners, free edge midpoints

For to evaluate the membrane reaction on out-of-plane load, the unit 9-node-4-corner
element is exposed to a normal out-of-plane single force of amount 10−5 on its central
node. Material stiffness parameters are λ=1 and µ=1, membrane thickness is hZ=0.001,
nodal coordinates are shown in table (15). Since out-of-plane stiffness of membranes is
zero for completely even membranes, for the initial stress free shape of the membrane the
central node is lowered out-of-plane compared with the corner nodes and edge midpoint
nodes; this induces an initial nonzero stiffness of the membrane in out-of-plane, i.e. normal
direction of the membrane. The out-of-plane coordinate of the central node is considered
to be 0.01 (case 1), 0.001 (case 2), 0.0001 (case 3) and 0.00001 (case 4), respectively.
The converged displacement solution for cases 1 to 4 is shown in table (15). For out-of-
plane coordinate 0.01 of the central node (case 1) converged out-of-plane displacement of
the central node is 0.020794; for cases 2, 3 and 4 (out-of-plane coordinate 0.001, 0.0001,
0.00001 of the central node, respectively) converged out-of-plane displacement of the
central node is 0.105609499, 0.106090596 and 0.106138805, respectively. Comparison
of out-of-plane displacement of the central node 0.020794 for case 1 with out-of-plane
displacement of the central node 0.105609499 for case 2, 0.106090596 for case 3 and
0.106138805 for case 4 shows that for case 1 still material stiffness acts in out-of-plane
direction whereas for cases 2, 3 and 4 (since out-of-plane displacement of the central node
for these three cases is almost the same) only geometric stiffness acts in out-of-plane
direction; this indicates the nonlinear geometric stiffness as a property of the membrane
that is represented by the applied membrane element type with the applied numeric
approach.

4.7 Out-of-plane eigenload: Fixed corners, fixed edges

A quadratic membrane of edge length 2 is considered. Material stiffness parameters are
λ=1010 and µ=1010 (equivalent to modulus of elasticity E=2.5·1010 and Poisson ratio
ν=0.25), material density is ρ=1000, membrane thickness is hZ=0.001, gravity is gZ=10.
The undeformed stress free shape of the membrane is defined by the quadratic out-of-
plane shape z(x,y)=0.001·(x-1)(x+1)(y-1)(y+1). The considered membrane in x-y-plane
is exposed to eigenload in out-of-plane z-direction. The membrane is supported in out-
of-plane z-direction along its edges. Since the membrane has uniquely oriented curvature
throughout its domain the membrane is completely fixed in x- and y-displacement to
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avoid any in-plane x-y-displacement. For comparison of different discretization levels the
membrane is regularly meshed with one quadratic 9-node-4-corner element (case 1, 9
nodes), with 2×2 quadratic 9-node-4-corner elements (case 2, 25 nodes) and with 8×8
quadratic 9-node-4-corner elements (case 3, 289 nodes). Appropriate converged solutions
for out-of-plane z-displacement are shown in table (16) for cases 1, 2 and 3. Comparison
shows that nodal z-displacement is largest for the center of the membrane (node 9, 0.00324
for case 1, 0.00303 for case 2, 0.00296 for case 3). Node 289 near the membrane center
has z-displacement 0.00278, so slighly less than for the center itself. Node 18 between
membrane center and membrane edge center has z-displacement of 0.00181 (case 2) and
0.00171 (case 3), respectively. Node 22 between membrane center and membrane corner
has z-displacement of 0.00155 (case 2) and 0.00148 (case 3), respectively. Out-of-plane z-
displacement is largest for the membrane center, followed by second-largest z-displacement
in the vicinity of the membrane and even smaller z-displacement towards the membrane
edges and membrane corners. As the above definition z(x,y) of the undeformed stress free
out-of-plane shape of the membrane indicates the slope of the membrane is zero in the
membrane center. The zero slope in the membrane center induces the smallest geometric
stiffness with respect to out-of-plane eigenload in z-direction and therefore the largest out-
of-plane z-displacement within the membrane. The fact that nodal displacement decreases
with increasing number of elements for discretization indicates that refined consideration
of the quadratic out-of-plane shape in z-direction (for 2×2 elements and even more for 8×8
elements) leads to a higher stiffness of the membrane than the one element discretization
where the quadratic out-of-plane shape in z-direction is considered only by one out-of-
plane node (the central node 9).
In figure 2 the out-of-plane z-diplacement distribution for case 3 (8×8 elements) is shown.
As well the appropriate distribution of normal stresses Sξξ(ξ,η) and Sηη(ξ,η) and shear
stress Sξη(ξ,η) are shown in figure 2 where computation of stress values is performed
at the 3×3 Gausspoints of each element. Around the center of the membrane (node 9
and vicinity) it becomes obvious that the membrane is in compression and no tensile
stresses appear at the center of the membrane and its vicinity. Normal stresses Sξξ(ξ,η)
and Sηη(ξ,η) are maximum around the edge midpoints where maximum normal tensile
stresses act orthogonal to the appropriate edges; due to high tensile strain around the
edge midpoints directed towards the membrane center accordingly slight normal stress
parallel to the edges appears. Along the diagonals of the membrane in the region of
tensile normal stress the shear stress Sξη(ξ,η) shows maximum magnitude. To indicate
where the membrane experiences compression appropriate pseudo-stress fields for normal
stresses Spseudo

ξξ (ξ,η) and Spseudo
ηη (ξ,η) and for shear stress Spseudo

ξη (ξ,η) are determined by
application of a pseudo-elasticity tensor that shows constant stiffness for both tension and
compression; appropriate pseudo-stress distributions are shown in figure 2.

5 Applications

Application of the presented numeric approach is performed on the example of a Hypar
shaped membrane exposed to out-of-plane work load and to a spinnaker sail membrane
exposed to horizontal pressure load.

9



Carsten Corte

Node 1 2 3 4 5 6 7 8 9

1 31.46 4.73 -1.46 -2.73 -27.86 3.73 6.53 -3.73 -10.66
2 sym 31.46 -2.73 -1.46 -27.86 -3.73 6.53 3.73 -10.66
3 sym sym 31.46 4.73 6.53 -3.73 -27.86 3.73 -10.66
4 sym sym sym 31.46 6.53 3.73 -27.86 -3.73 -10.66
5 -19.86 -19.86 sym sym 65.06 -18.66 -11.73 -18.66 10.66
6 4.13 0.66 0.66 4.13 -7.46 98.66 7.46 19.73 -113.06
7 sym sym -19.86 -19.86 sym -18.66 65.06 -18.66 10.66
8 0.66 4.13 4.13 0.66 -7.46 sym -7.46 98.66 -113.06
9 -23.46 -23.46 -23.46 -23.46 4.20 -81.06 4.26 -81.06 247.46

Table 3: unit element stiffness coefficients kxx for nodal coordinates and ±1.0 displacements as in table
(2), 3 × 3 Gausspoints, material stiffness parameters λ = µ = 1 and element thickness hZ = 1

Node 1 2 3 4 5 6 7 8 9

1 31.46 -2.73 -1.46 -4.73 -3.73 6.53 3.73 -27.86 -10.66
2 sym 31.46 4.73 -1.46 -3.73 -27.86 3.73 6.53 -10.66
3 sym sym 31.46 -2.73 3.73 -27.86 -3.73 6.53 -10.66
4 sym sym sym 31.46 3.73 6.53 -3.73 -27.86 -10.66
5 0.66 0.66 4.13 4.13 98.66 -7.46 19.73 -7.46 -113.06
6 sym -19.86 -19.86 sym -18.66 65.06 -18.66 -11.73 10.66
7 4.13 4.13 0.66 0.66 sym -7.46 98.06 -7.46 -113.06
8 -19.86 sym -19.86 -19.86 -18.66 sym -18.66 65.06 10.66
9 -23.46 -23.46 -23.46 -23.46 -81.06 4.26 -81.06 4.26 247.46

Table 4: unit element stiffness coefficients kyy for nodal coordinates and ±1.0 displacements as in table
(2), 3 × 3 Gausspoints, material stiffness parameters λ = µ = 1 and element thickness hZ = 1

Node 1 2 3 4 5 6 7 8 9

1 71.11 -17.77 4.44 -17.77 35.55 -8.88 -8.88 35.55 17.77
2 sym 71.11 -17.11 4.44 35.55 35.55 -8.88 -8.88 17.77
3 sym sym 71.11 -17.77 -8.88 35.55 35.55 -8.88 17.77
4 sym sym sym 71.11 -8.88 -8.88 35.55 35.55 17.77
5 sym sym sym sym 284.44 17.77 -71.11 17.77 142.22
6 sym sym sym sym sym 284.44 17.77 -71.11 142.22
7 sym sym sym sym sym sym 284.44 17.77 142.22
8 sym sym sym sym sym sym sym 284.44 142.22
9 sym sym sym sym sym sym sym sym 1137.77

Table 5: unit element mass coefficients mxx, myy and mzz, respectively, for nodal coordinates as in table
(2), 3 × 3 Gausspoints, material density ρ = 1000 and element thickness hZ = 1
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Node x y z ux uy uz

1 -1 -1 0 -0.1 -0.1 0
2 1 -1 0 0.1 -0.1 0
3 1 1 0 0.1 0.1 0
4 -1 1 0 -0.1 0.1 0
5 0 -1 0 0.0 -0.1 0
6 1 0 0 0.1 0.0 0
7 0 1 0 0.0 0.1 0
8 -1 0 0 -0.1 0.0 0
9 0 0 0 0.0 0.0 0

Table 6: unit element nodes with ±0.1 nodal displacement

Node x y z ux uy uz

1 -1 -1 0 -0.01 -0.01 0
2 1 -1 0 0.01 -0.01 0
3 1 1 0 0.01 0.01 0
4 -1 1 0 -0.01 0.01 0
5 0 -1 0 0.00 -0.01 0
6 1 0 0 0.01 0.00 0
7 0 1 0 0.00 0.01 0
8 -1 0 0 -0.01 0.00 0
9 0 0 0 0.00 0.00 0

Table 7: unit element nodes with ±0.01 nodal displacement

Node x y z ux uy uz

1 -1 -1 0 -0.001 -0.001 0
2 1 -1 0 0.001 -0.001 0
3 1 1 0 0.001 0.001 0
4 -1 1 0 -0.001 0.001 0
5 0 -1 0 0.000 -0.001 0
6 1 0 0 0.001 0.000 0
7 0 1 0 0.000 0.001 0
8 -1 0 0 -0.001 0.000 0
9 0 0 0 0.000 0.000 0

Table 8: unit element nodes with ±0.001 nodal displacement
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Node 1 2 3 4 5 6 7 8 9

1 2.0078 0.1573 -0.0786 -0.2631 -1.5683 0.2469 0.4504 0.0461 -0.9985
2 sym 2.0078 -0.2631 -0.0786 -1.5683 0.0461 0.4504 0.2469 -0.9985
3 sym sym 2.0078 0.1573 0.4504 0.0461 -1.5683 0.2469 -0.9985
4 sym sym sym 2.0078 0.4504 0.2469 -1.5683 0.0461 -0.9985
5 -1.4055 -1.4055 sym sym 5.0359 -1.1613 -0.6294 -1.1613 -0.1736
6 0.2550 0.1356 0.1356 0.2550 -0.9333 6.8918 -0.9333 0.7922 -6.5988
7 sym sym -1.4055 -1.4055 sym -1.1613 5.0359 -1.1613 -0.1736
8 0.1356 0.2550 0.2550 0.1356 -0.9333 sym -0.9333 6.8918 -6.5988
9 -1.2589 -1.2589 -1.2589 -1.2589 -0.3038 -5.9476 -0.3038 -5.9476 17.5389

Table 9: unit element stiffness coefficients kxx for nodal coordinates and ±0.1 displacements as in table
(6), 3 × 3 Gausspoints, material stiffness parameters λ = µ = 1 and element thickness hZ = 1

Node 1 2 3 4 5 6 7 8 9

1 1.3103 0.0641 -0.0473 -0.1954 -0.9676 0.1634 0.3028 0.1058 -0.7363
2 sym 1.3103 -0.1954 -0.0473 -0.9676 0.1058 0.3028 0.1634 -0.7363
3 sym sym 1.3103 0.0641 0.3028 0.1058 -0.9676 0.1634 -0.7363
4 sym sym sym 1.3103 0.3028 0.1634 -0.9676 0.1058 -0.7363
5 -0.9540 -0.9540 sym sym 3.5221 -0.7499 -0.3790 -0.7499 -0.3409
6 0.1641 0.1133 0.1133 0.1641 -0.7309 4.6566 -0.7309 0.3926 -4.1424
7 sym sym -0.9540 -0.9540 sym -0.7499 3.5221 -0.7499 -0.3409
8 0.1133 0.1641 0.1641 0.1133 -0.7309 sym -0.7309 4.6566 -4.1424
9 -0.7581 -0.7581 -0.7581 -0.7581 -0.3518 -4.0880 -0.3518 -4.0880 11.9123

Table 10: unit element stiffness coefficients kxx for nodal coordinates and ±0.01 displacements as in table
(7), 3 × 3 Gausspoints, material stiffness parameters λ = µ = 1 and element thickness hZ = 1

Node 1 2 3 4 5 6 7 8 9

1 1.2509 0.0564 -0.0447 -0.1895 -0.9166 0.1563 0.2902 0.1105 -0.7136
2 sym 1.2509 -0.1895 -0.0447 -0.9166 0.1105 0.2902 0.1563 -0.7136
3 sym sym 1.2509 0.0564 0.2902 0.1105 -0.9166 0.1563 -0.7136
4 sym sym sym 1.2509 0.2902 0.1563 -0.9166 0.1105 -0.7136
5 -0.9153 -0.9153 sym sym 3.3920 -0.7149 -0.3578 -0.7149 -0.3541
6 0.1564 0.1113 0.1113 0.1564 -0.7130 4.4653 -0.7130 0.3592 -3.9339
7 sym sym -0.9153 -0.9153 sym -0.7149 3.3920 -0.7149 -0.3541
8 0.1113 0.1564 0.1564 0.1113 -0.7130 sym -0.7130 4.4653 -3.9339
9 -0.7157 -0.7157 -0.7157 -0.7157 -0.3551 -3.9285 -0.3551 -3.9285 11.4304

Table 11: unit element stiffness coefficients kxx for nodal coordinates and ±0.001 displacements as in
table (8), 3 × 3 Gausspoints, material stiffness parameters λ = µ = 1 and element thickness hZ = 1
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Node x y z Fx Fy Fz Equilibrium uN1,N2,N3,N4
x uN5,N6,N7,N8

x uN1,N2,N3,N4
z

Iteration uN1,N2,N3,N4
y uN5,N6,N7,N8

y uN5,N6,N7,N8
z

1 -1 -1 0 -0.01 -0.01 0 1 ±0.006250 0 0
2 1 -1 0 0.01 -0.01 0 2 ±0.005874 0 0
3 1 1 0 0.01 0.01 0 3 ±0.005918 0 0
4 -1 1 0 -0.01 0.01 0 4 ±0.005913 0 0
5 0 -1 0 ÷ ÷ ÷ 5 ±0.005914 0 0
6 1 0 0 ÷ ÷ ÷
7 0 1 0 ÷ ÷ ÷
8 -1 0 0 ÷ ÷ ÷
9 0 0 0 ÷ ÷ ÷

Table 12: unit element corner force exposed, 3 × 3 Gausspoints, material stiffness parameters λ = µ = 1
and element thickness hZ = 1 with iterationwise displacement solution for corner nodes 1, 2, 3 and 4

Node x y z Fx Fy Fz Equilibrium uN1,N2,N3,N4
x uN5,N6,N7,N8

x uN1,N2,N3,N4
z

Iteration uN1,N2,N3,N4
y uN5,N6,N7,N8

y uN5,N6,N7,N8
z

1 -1 -1 0 -0.01 -0.01 0 1 ±0.006634 ±0.002307 0
2 1 -1 0 0.01 -0.01 0 2 ±0.006314 ±0.002271 0
3 1 1 0 0.01 0.01 0 3 ±0.006330 ±0.002272 0
4 -1 1 0 -0.01 0.01 0 4 ±0.006330 ±0.002272 0
5 0 -1 0 0.00 -0.01 0
6 1 0 0 0.01 0.00 0
7 0 1 0 0.00 0.01 0
8 -1 0 0 -0.01 0.00 0
9 0 0 0 ÷ ÷ ÷

Table 13: unit element corner and edge midpoint force exposed, 3 × 3 Gausspoints, material stiffness
parameters λ = µ = 1 and element thickness hZ = 1 with iterationwise displacement solution for corner
nodes 1, 2, 3 and 4 and edge midpoint nodes 5, 6, 7 and 8

Node x y z Fx Fy Fz Equilibrium uN1,N2,N3,N4
x uN5,N6,N7,N8

x uN1,N2,N3,N4
z

Iteration uN1,N2,N3,N4
y uN5,N6,N7,N8

y uN5,N6,N7,N8
z

1 -1 -1 0 -0.01 -0.01 0 1 ±0.066346 ±0.023076 0
2 1 -1 0 0.01 -0.01 0 2 ±0.041951 ±0.019947 0
3 1 1 0 0.01 0.01 0 3 ±0.050051 ±0.020686 0
4 -1 1 0 -0.01 0.01 0 4 ±0.047099 ±0.020445 0
5 0 -1 0 0.00 -0.01 0 5 ±0.048151 ±0.020529 0
6 1 0 0 0.01 0.00 0 10 ±0.047873 ±0.020507 0
7 0 1 0 0.00 0.01 0 25 ±0.047872 ±0.020507 0
8 -1 0 0 -0.01 0.00 0 26 ±0.047872 ±0.020507 0
9 0 0 0 ÷ ÷ ÷

Table 14: unit element corner and edge midpoint force exposed, 3 × 3 Gausspoints, material stiffness
parameters λ = µ = 1 and element thickness hZ = 0.1 with iterationwise displacement solution for corner
nodes 1, 2, 3 and 4 and edge midpoint nodes 5, 6, 7 and 8
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Node x y z Fx Fy Fz Equilibrium uN5,N6,N7,N8
x uN5,N6,N7,N8

z uN9
z

Iteration uN5,N6,N7,N8
y

1 -1 -1 0 ÷ ÷ ÷
2 1 -1 0 ÷ ÷ ÷
3 1 1 0 ÷ ÷ ÷
4 -1 1 0 ÷ ÷ ÷
5 0 -1 0 0 0 0
6 1 0 0 0 0 0
7 0 1 0 0 0 0
8 -1 0 0 0 0 0
9 0 0 0.01000 0 0 10−5 Case 1: 100 ±0.000752 0.015282 0.020794
9 0 0 0.00100 0 0 10−5 Case 2: 100 ±0.011081551 0.062530450 0.105609499
9 0 0 0.00010 0 0 10−5 Case 3: 100 ±0.011094136 0.062621772 0.106090596
9 0 0 0.00001 0 0 10−5 Case 4: 100 ±0.011095423 0.062630868 0.106138805

Table 15: unit element out-of-plane center force exposed, 3 × 3 Gausspoints, material stiffness parameters
λ = µ = 1010 and element thickness hZ = 0.001 with converged displacement solution for edge midpoint
nodes 5, 6, 7 and 8 and central node 9 for different cases of out-of-plane initial position of central node 9

Node x y z ux uy uz uz uz

Cases 1, 2, 3 Cases 1, 2, 3 Case 1 Case 2 Case 3

1 -1 -1 0 0 0 0 0 0
2 1 -1 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0
4 -1 1 0 0 0 0 0 0
5 0 -1 0 0 0 0 0 0
6 1 0 0 0 0 0 0 0
7 0 1 0 0 0 0 0 0
8 -1 0 0 0 0 0 0 0
9 0.000 0.000 0.001000 0.00000 0.00000 0.00324 0.00303 0.00296
18 0.000 -0.500 0.000750 0.00000 0.00000 ÷ 0.00181 0.00171
22 -0.500 -0.500 0.000563 0.00000 0.00000 ÷ 0.00155 0.00148
289 -0.125 0.125 0.000969 0.00000 0.00000 ÷ ÷ 0.00278

Table 16: unit membrane out-of-plane eigenload exposed, 3 × 3 Gausspoints per element, material
stiffness parameters λ = µ = 1010, material density ρ = 1000, membrane thickness hZ = 0.001 and
gravity gZ = 10 with converged displacement solutions for different nodes on the inner of the unit
membrane for discretization with one element (case 1), with 2 × 2 elements (case 2) and with 8 × 8
elements (case 3)
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5.1 Out-of-plane work load on Hypar shaped membrane

A Hypar shaped membrane with quadratic ground-section and edge length of 5 m is ex-
posed to out-of-plane work load. Corner out-of-plane z-coordinates of the Hypar shaped
membrane are ±0.0625 m. Material stiffness parameters are λ=1010 N/m2 and µ=1010

N/m2 (equivalent to modulus of elasticity E=2.5·1010 N/m2 and Poisson ratio ν=0.25),
material density is ρ=1000 kg/m3, membrane thickness is hZ=0.001 m, gravity is gZ=10
m/s2. The membrane is exposed to a distributed load of 1000 N/m2 (100 times its eigen-
load, e.g. due to snow) in out-of-plane z-direction. The membrane is meshed with 8×8
quadratic 9-node-4-corner elements (289 nodes). Cartesian coordinates of the undeformed
inital stress free membrane shape for corner nodes, edge midpoint nodes, central node and
several other nodes on the inner of the membrane are shown in table (17) together with the
converged displacement solution for these selected nodes. Central node 9 out-of-plane z-
displacement is largest with 0.00906. . . m, followed by surrounding nodes 287 and 289 with
z-displacement of 0.00502. . . m and nodes 286 and 288 with z-displacement of 0.00444. . .
m. Further outward positioned nodes 18, 20, 19 and 21 (z-displacement all 0.000056. . .
m) on the main axes as well as nodes 22, 24 (z-displacement both 0.0000002. . . m), 23 and
25 (z-displacement both 0.0000004. . . m) on the diagonal axes show much smaller out-
of-plane z-displacement. This indicates that out-of-plane z-displacement appears to the
largest amount in the center of the membrane and its vicinity where the slope of the mem-
brane with respect to out-of-plane z-direction is minimum and therefore the membrane
has least stiffness with respect to out-of-plane z-direction. The converged displacement
solution for the considered Hypar shaped membrane shows full symmetry.
Altogether an out-of-plane z-displacement of 0.00906. . . m in the center of the mebrane
induced by an out-of-plane load in z-direction of 1000 N/m2 (e.g. due to snow) with a
membrane thickness of hZ=0.001 m, an edge length of 5 m and corner out-of-plane z-
coordinates of ±0.0625 m appears acceptable. Initial undeformed stress free shape of the
Hypar shaped membrane and out-of-plane z-displacement distribution due to out-of-plane
load in z-direction of 1000 N/m2 (e.g. due to snow) are shown in figure 3. It becomes
obvious that out-of-plane z-displacement is approximately zero althrough the membrane
except for the center and its vicinity where out-of-plane z-displacement is remarkable
compared with all other regions of the membrane. This demonstrated the shape-inherent
stiffness of the Hypar shape itself (except for the center and its vicinity). For to visualize
the shape of the Hypar shaped membrane and its remarkable out-of-plane z-displacement
in the center and its vicinity the out-of-plane z-coordinate of the initial undeformed stress
free shape and the out-of-plane z-displacement are also plotted with scale-enlargened fac-
tor 10 in figure 3.

5.2 Horizontal pressure load on 3D spinnaker sail membrane

A 3D spinnaker sail membrane is exposed to horizontal external load that represents air
flow pressure onto the sail membrane. The sail membrane has a total height of 40 m on its
vertical center line and a total width of 20 m along its curved bottom. The shape of the
sail membrane is characterized by a maximum out-of-plane y-coordinate of 5 m at 18.5
m vertical distance measured from its bottom line midpoint. The sail is completely fixed

15



Carsten Corte

in displacement for all three cartesian directions at its’ four corners. The sail membrane
is fixed in out-of-plane y-direction along its outer boundary on its curved bottom line, on
both curved side lines and on the short top line of length 2 m (which altogether mod-
els a trapezoidal boundary of the curved-in-3D-space sail membrane that approximates
a curved-in-3D-space triangular shape). Material stiffness parameters are λ=1010 N/m2

and µ=1010 N/m2 (equivalent to modulus of elasticity E=2.5·1010 N/m2 and Poisson ra-
tio ν=0.25), material density is ρ=1000 kg/m3, membrane thickness is hZ=0.001 m. The
membrane is meshed with 8×8 quadratic 9-node-4-corner elements (289 nodes). Carte-
sian coordinates of the undeformed inital stress free membrane shape for corner nodes,
edge midpoint nodes, the central node and other nodes on the inner of the membrane
are shown in table (18). The sail membrane is exposed to horizontal out-of-plane load
in y-direction of amount 10 N/m2 (case 1, air flow pressure p1=0.5ρairv

2
air,1, ρair=1.25

kg/m3, vair,1=4 m/s) and of amount 100 N/m2 (case 2, air flow pressure p2=0.5ρairv
2
air,2,

vair,2=12.65 m/s).
Displacement for selected nodes on the membrane for cases 1 and 2 is shown in table (18).
Cartesian components of displacement distribution as well as the magnitude of displace-
ment distribution over the spinnaker sail membrane for cases 1 and 2 are illustrated in
figure 4. The displacement solution for both cases 1 and 2 shows approximate symmetry
with regard to the vertical center line. Displacement for case 2 (vair,2=12.65 m/s) appears
altogether larger than for case 1 (vair,1=4 m/s). Largest displacement for both cases 1
and 2 appears in the lower third of the spinnaker sail membrane, where largest amount of
displacement takes place in out-of-plane y-direction. In the lower third of the membrane
on lateral side range transversal horizontal x-displacement is directed outward. The top
range of the membrane in the upper third of the membrane is z-displaced vertically upward
whereas in its lower third the membrane is z-displaced vertically downward. A distinction
between case 1 and case 2 can be made regarding the out-of-plane y-displacement in the
lower third of the membrane: For case 1 the respective out-of-plane y-displacement ap-
pears around the vertical center line and is of approximately 0.035 m (vair,1=4 m/s). For
case 2, in contrast, the respective out-of-plane y-displacement appears symmetrically on
the lateral side range and is approximately 0.086 m (vair,2=12.65 m/s). That means that
for case 2 the spinnaker sail membrane is flattened in its lower third to an obviously higher
degree than it is for case 1. Opposite to the lower third of the membrane for comparison
between case 1 and case 2, in the upper third of the membrane for comparison between
case 1 and case 2 it shows that for case 1 the lateral range is out-of-plane y-displaced
the most whereas for case 2 maximum out-of-plane y-displacement in the upper third
of the membrane appears on the vertical center line of the membrane, i.e. in the upper
third of the membrane for case 1 the spinnaker sail membrane is flattened whereas it is
funnel-shaped sharpened in the upper third of the membrane for case 2.

6 Conclusion

The govering equation for 3D membrane structures with tangential tensile stresses only is
expressed by a virtual work approach. Parametric description of the undeformed initial
stress free shape of the membrane and its 3D cartesian displacement is applied. Con-
stitutive relation between structural membrane stress and structural membrane strain is
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Node x [m] y [m] z [m] ux [m] uy [m] uz [m]

1 -2.5 -2.5 -0.0625000000 0 0 0
2 2.5 -2.5 0.0625000000 0 0 0
3 2.5 2.5 -0.0625000000 0 0 0
4 -2.5 2.5 0.0625000000 0 0 0
5 0 -2.5 0 0 0 0
6 2.5 0 0 0 0 0
7 0 2.5 0 0 0 0
8 -2.5 0 0 0 0 0
9 0 0 0 0 0 0.0090626542

286 -0.3125 -0.3125 -0.0009765625 0 0 0.0044405393
287 0.3125 -0.3125 0.0009765625 0 0 0.0050201298
288 0.3125 0.3125 -0.0009765625 0 0 0.0044405393
289 -0.3125 0.3125 0.0009765625 0 0 0.0050201298
18 0 -1.2500 0 0 0 0.0000562882
19 1.2500 0 0 0 0 0.0000562882
20 0 1.2500 0 0 0 0.0000562882
21 -1.2500 0 0 0 0 0.0000562882
22 -1.2500 -1.2500 -0.0156250000 0 0 0.0000004338
23 1.2500 -1.2500 0.0156250000 0 0 0.0000002372
24 1.2500 1.2500 -0.0156250000 0 0 0.0000004338
25 -1.2500 1.2500 0.0156250000 0 0 0.0000002372

Table 17: Hypar shaped membrane exposed to 1000 N/m2 (100 times its out-of-plane eigenload), 3 × 3
Gausspoints per element, material stiffness parameters λ = µ = 1010 N/m2, material density ρ = 1000
kg/m3, membrane thickness hZ = 0.001 m and gravity gZ = 10 m/s2 with converged displacement
solution for different nodes on the inner of the membrane for discretization with 8 × 8 elements
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Node x [m] y [m] z [m] ux [m] uy [m] uz [m] ux [m] uy [m] uz [m]
Case 1 Case 1 Case 1 Case 2 Case 2 Case 2

1 -10 0 0 0 0 0 0 0 0
2 10 0 0 0 0 0 0 0 0
3 1 40 0 0 0 0 0 0 0
4 -1 40 0 0 0 0 0 0 0
5 0 3 0 -0.00001 0.00071 0 0.00007 0.00207 0
6 3.6363 20 0 0.00132 0.00023 0 0.00659 0.00207 0
7 0 40 0 -0.00010 -0.00011 0 0.00272 -0.00077 0
8 -3.6363 20 0 -0.00143 0.00025 0 -0.00751 0.00222 0
9 0 21.5 5 -0.00008 0.00000 0.00319 0.00009 0.00122 0.00567

286 -0.5059 19.1611 4.8273 -0.00446 -0.00094 0.01454 -0.00459 0.00038 0.01390
287 0.5059 19.1611 4.8273 0.00430 -0.00094 0.01452 0.00492 0.00034 0.01456
288 0.4063 23.7920 4.8273 0.00243 0.00053 0.00650 0.00619 0.00229 0.01392
289 -0.4063 23.7920 4.8273 -0.00270 0.00053 0.00645 -0.00609 0.00231 0.01428
18 0 12.2500 3.5355 -0.00006 -0.00992 0.03400 0.00004 0.00017 0.00515
19 1.8180 21.1250 3.7500 0.00371 0.00033 0.00216 0.00420 0.00159 0.00059
20 0 30.7500 3.5355 -0.00007 -0.00228 -0.00737 0.00110 0.01618 0.05217
21 -1.8180 21.1250 3.7500 -0.00359 0.00032 0.00194 -0.00634 0.00177 0.00235
22 -2.7500 11.6875 2.6517 -0.02213 -0.00525 0.03731 -0.04541 -0.01177 0.08425
23 2.7500 11.6875 2.6517 0.02191 0.00522 0.03691 0.04917 -0.01269 0.08837
24 1.1029 30.5625 2.6517 0.00511 0.00090 0.00298 0.00718 0.00138 0.00472
25 -1.1029 30.5625 2.6517 -0.00448 0.00075 0.00244 -0.01029 0.00201 0.00704

Table 18: 3D spinnaker sail membrane exposed to out-of-plane horizontal load of 10 N/m2 (case 1) and
of 100 N/m2 (case 2), corner nodes, edge midpoint nodes, central node and other node on the inner of
the membrane, 3 × 3 Gausspoints per element, material stiffness parameters λ = µ = 1010 N/m2 and
membrane thickness hZ = 0.001 m with out-of-plane initial position of central node 9
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assumed linear. The governing equation can refer either to the undeformed state of the
membrane structure with 2nd Piola-Kirchhoff stress and Green-Lagrange strain or to the
deformed state of the membrane structure with Cauchy stress and Euler-Almansi strain.
Consideration of full nonlinearity of membrane stress and linearized virtual membrane
strain leads to a fully consistent description of the stated problem. Spatial discretization
is performed by introduction of 9-node-4-corner finite elements with quadratic polynomials
for interpolation of displacement within each element. Time discretization is performed
by the HHT-α method. The resulting discrete nonlinear equation system is solved in an
iterative manner for the unknown displacement of the considered membrane structure.
Evaluation of the numeric approach on the unit 9-node-4-corner element is performed
in detail: Interpolation of displacement within the element is checked. The nonlinearly
(super-linearly) increasing in-plane stiffness of the membrane for linearly increasing in-
plane displacement is demonstrated; appropriate stiffness matrix coefficients for in-plane
displacement are shown. Zero out-of-plane stiffness for completely even membranes is
demonstrated. Mass matrix coefficients for the unit membrane element are shown. In-
plane displacement due to in-plane external forces is determined in dependence on bound-
ary conditions for corner nodes and edge midpoint nodes. Geometric out-of-plane stiffness
due to out-of-plane external forces is evaluated and assessed in dependence on the out-
of-plane shape of the membrane and in dependence on the discretization level (number
of elements in the finite element mesh). For symmetric out-of-plane load (eigenload)
the stress distribution within the unit membrane shows complete symmetry where in the
outer part of the membrane tensile stresses appear whereas in the center of the membrane
(for a parabolic out-of-plane shape of the undeformed stress free membrane) the state of
force equilibrium is indifferent (i.e. the displacement field in the vicinity of the membrane
center indicates that compression of the membrane occurs and thus no tensile stresses act
in and around the membrane center).
Application of the numeric approach to a Hypar shaped membrane with square ground-
section that is exposed to 100 times its out-of-plane eigenload (e.g. due to snow) demon-
strates the high stiffness of the Hypar shape against out-of-plane load with small out-of-
plane displacement except for the center of the membrane where the slope of the mem-
brane with respect to out-of-plane direction is least within the membrane and therefore
the membrane center experiences largest out-of-plane displacement. Application of the
numeric approach to a spinnaker sail membrane that is exposed to horizontal pressure
load that represents air flow shows characteristic deformation of the sail. Deformation
patterns due to two different air flow velocities are compared with each other.
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Figure 1: membrane evaluation: 4.1 (top left): 9-node-4-corner membrane unit element with node num-
bers (outer) and Gauss point numbers (inner); 4.2 (center left): corner and edge midpoint displacement
±1 on unit element; 4.3 (bottom left): corner and edge midpoint displacement ±0.1 on unit element;
4.3 (center): corner and edge midpoint displacement ±0.01 on unit element; 4.3 (bottom center): corner
and edge midpoint displacement ±0.001 on unit element; 4.4 (top center): in-plane corner x- and y-force
±0.01 on unit element, fixed edge midpoints, fixed center; 4.5 (top right): in-plane corner and edge mid-
point x- and y-force ±0.01 on unit element, tangentially fixed edge midpoints, fixed center; 4.6 (center
right): out-of-plane center z-force +10−5 on unit element, fixed corners; 4.7 (bottom right): out-of-plane
eigenload on unit element, fixed boundary
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Figure 2: membrane evaluation 4.7: membrane with initial undeformed stress free out-of-plane shape
z(x,y)=0.001·(x-1)(x+1)(y-1)(y+1) exposed to out-of-plane eigenload for 8×8 elements: left column:
out-of-plane initial shape z-coordinate; out-of-plane z-displacement; sum of out-of-plane initial shape z-
coordinate and out-of-plane z-displacement; center column: membrane stress Sξξ(ξ, η) on Gausspoints
(3×3 Gausspoints per element) for tensile stiffness only; membrane stress Sηη(ξ, η) on Gausspoints (3×3
Gausspoints per element) for tensile stiffness only; membrane stress Sξη(ξ, η) on Gausspoints (3×3 Gauss-
points per element) for tensile stiffness only; right column: membrane pseudo stress Spseudo

ξξ (ξ, η) on
Gausspoints (3×3 Gausspoints per element) for tensile stiffness and pseudo-compressive stiffness; mem-
brane pseudo stress Spseudo

ηη (ξ, η) on Gausspoints (3×3 Gausspoints per element) for tensile stiffness and
pseudo-compressive stiffness; membrane pseudo stress Spseudo

ξη (ξ, η) on Gausspoints (3×3 Gausspoints per
element) for tensile stiffness and pseudo-compressive stiffness
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Figure 3: hypar shaped membrane: left column: out-of-plane initial shape z-coordinate in m; out-of-plane
z-displacement in m; sum of out-of-plane initial shape z-coordinate and out-of-plane z-displacement in m;
sum of out-of-plane initial shape z-coordinate and 10 × out-of-plane z-displacement in m; right column:
out-of-plane initial shape z-coordinate in m, z-scale factor 10; out-of-plane z-displacement in m, z-scale
factor 10; sum of out-of-plane initial shape z-coordinate and out-of-plane z-displacement in m, z-scale
factor 10; sum of out-of-plane initial shape z-coordinate and 10 × out-of-plane z-displacement in m,
z-scale factor 10
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Figure 4: spinnaker sail membrane: top row: cartesian displacement components and displacement
magnitude in m for horizontal load of 10 N/m2 (in y-direction); bottom row: cartesian displacement
components and displacement magnitude in m for horizontal load of 100 N/m2 (in y-direction)
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