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Abstract. In the framework of the Zigzag theories, an important role is played by the zigzag 

function. In the open literature, two kind of zigzag functions exist. A comparison of the 

advantages in adopting one zigzag function rather than the other is compulsory. In this work, 

with a general formalism, a displacement-based model wherein the First Order Shear 

Deformation (FSDT) kinematic is enriched by adding a zigzag contribution only to the in-

plane displacements description, is developed. By selecting the zigzag function, two models 

arise from the general formulation. Comparison on the response predictive capabilities 

ensured by the two zigzag functions, is made. Results pertaining the elastostatic deformation, 

free vibrations and buckling load problems of square sandwich plates subjected to several 

load and boundary conditions are compared with exact Elasticity solutions, when available, or 

high-fidelity FE model.  
 

 

1 INTRODUCTION 

In modeling multilayered composite and sandwich structures, the main challenge is to 

capture the slope variation of the in-plane displacements distribution along the thickness 

direction of a beam/plate/shell component. The mismatch in mechanical properties between 

two adjacent layers requires to model a jump in the shear strain at layers interface in order to 

satisfy the equilibrium condition of the interlaminar transverse shear stresses. In the 

framework of the displacement-based models, two approaches are available: (i) Layer-Wise 

models [1], accurate but computationally expensive; (ii) Zigzag models, firstly introduced by 

Di Sciuva [2,3], where a zigzag contribution, accounting for the slope variation of the 

through-the-thickness in-plane displacements, is added to a smeared displacement field. The 

Zigzag models save the computational cost ensuring an accuracy comparable with that of the 

LW theories. 

Assuming the same polynomial distribution, Zigzag models stand out based on the zigzag 

function adopted. In the open literature, two zigzag functions, ascribable to their original 

authors, exist: (i) Di Sciuva’s type zigzag function [2-4]; (ii) Murakami’s type zigzag function 
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[5]. The former is derived by enforcing the transverse shear stresses continuity at layers 

interface. Following the Di Sciuva’ idea, several zigzag models arose [6-8]. Even though 

physically correct, the models developed have as main drawback a vanishing transverse shear 

stresses at the clamped edge [9]. To overcome this problem retaining the great accuracy in 

predicting the through-the-thickness distribution of in-plane displacements proper of the 

original Di Sciuva’s work [2], Tessler, Di Sciuva and Gherlone [10] formulated the Refined 

Zigzag Theory (RZT). The RZT is a displacement-based approach wherein the FSDT 

kinematics is enriched by adding to the in-plane displacements a piece-wise and continuous 

linear contribution. The zigzag function is derived enforcing only a partial continuity 

condition of transverse shear stresses at layers interface. This model, even thought violates the 

equilibrium at interfaces, ensures an estimation of the transverse shear stresses, piece-wise 

constant along the thickness, correct in a average sense along with an accurate prediction of 

in-plane displacements. From this point, we refer to the RZT zigzag function (RZT-F) as Di 

Sciuva’s type function. On the contrary, Murakami [5] developed a mixed first-order zigzag 

model via the Reissner Mixed Variational Theorem [11]. The Murakami’s type zigzag 

function (MZZ-F) is derived considering the distribution of in-plane displacements proper of 

periodic laminates, that is laminates with stacking sequence (a/b/a/b/..). Then, the MZZ-F is 

not a physically-based zigzag function and its limits have been remarked by its same author 

[12]. Despite the author of the MZZ-F warned the scientific community about the drawbacks 

of his zigzag functions, the use of the MZZ-F in the formulation of first- and higher-order, 

both displacement-based and mixed, models is wide in the open literature and some examples 

of application are found in [13-15]. 

The need for a comparison between the two zigzag functions performances has been 

underrated for a long time. Recently, Gherlone [16] has covered this lack in literature by 

performing a deep investigation on the capabilities of the two zigzag functions both when 

used in a displacement-based approach and a mixed one. By means of extensive numerical 

investigation concerning the bending problem of multilayered and sandwich beams, the 

author remarks the advantages in adopting the RZT-F over the MZZ-F. 

Aim of this paper is to extend the deep investigation performed by Gherlone [16] to the 

bending, free vibration and buckling load problems of sandwich plates. To compare the 

predictive capabilities of the two zigzag functions, two first-order zigzag  models are taken 

into consideration. The first is the RZT; the second, called MZZ, consists in an enrichment of 

the FSDT kinematics, wherein to the in-plane displacements approximation, a zigzag 

contribution ruled by the MZZ-F is added. Moreover, by comparison with FSDT, adopting a 

suitable shear correction factors, the advantages in adding a zigzag contribution to the FSDT 

is assessed. Results are compared with the exact Elasticity solution, when available, and with 

high-fidelity FE models. 

2 KINEMATICS AND FORMULATION 

In this section, the kinematic assumptions proper of a first-order zigzag model are 

presented.  

Consider a laminated plate of uniform thickness 2h with N perfectly bonded orthotropic 

layers as shown in Figure 1. The orthogonal Cartesian coordinate system ( , )zx  is taken as 

reference where the thickness coordinate z ranges from -h to h. The middle reference plane (or 
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midplane) of the plate, Sm, is placed on the x-plane. The plate is bounded by a cylindrical edge 

surface, S, constituted by two distinct surfaces, Su and S , on which the geometrical and 

mechanical boundary conditions are enforced, respectively. Moreover, the intersection of the 

surface S and of the x -plane is the curve C which represents the perimeter of the midplane, 

Sm. As for the edge surface, the curve C is composed by two distinct curves, Cu and C , 

originated by the intersection of Su and S  with the x -plane, respectively. 

 
Figure 1. General plate notation. 

Formally, the RZT and the MZZ share the same kinematic description: 

 ( ) ( )( , ) ( ) ( ) ( ) ( );      1,2

( , ) ( )

k k

z

U z u z f z

U z w

         



x x x x

x x
 (1) 

wherein 
( )kU and 

zU are the in-plane displacements and the transverse one respectively, and 

the superscript (k) means that the quantities is related to the kth layer. The first-order zigzag 

model results as the superposition of the FSDT kinematic field and a piece-wise linear and 

continuous contribution, i.e. the zigzag contribution, given by the product of a priori known 

zigzag function, 
( ) ( )kf z , and the relative zigzag amplitude, ( ) x . To the five kinematic 

variables, proper of the FSDT ( ( )u x , ( ) x , ( )w x ), the first-order zigzag model adds the two 

zigzag amplitudes, ( ) x , resulting in seven kinematic unknowns, independent of the number 

of layers.  

Consistent with the displacement field in Eq.(1), the non-linear (in the Von Kàrmàn sense) 

in-plane and transverse shear strains are 

 ( ) ( ) ( ) ( ) ( )

, , , , , , , , ,2 ;k k k k k

zu u z f f w w w                                      
 

(2) 

The generalized Hooke’s law for the kth orthotropic lamina, whose principal material 

directions are arbitrary with respect to the reference coordinate system reads  

( ) ( ) ( ) ( ) ( ) ( );    k k k k k k

z zC Q         
 

(3) 

where 
( )kC  and 

( )kQ  are the transformed elastic stiffness coefficients referred to the ( ), zx  

z
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coordinate system and relative to the plane-stress condition that assumes that transverse 

normal stress is negligibly small in relation to the in-plane stresses. 

2.1 Refined Zigzag function 

This section briefly recalls the key features of the RZT-F, herein quoted as ( ) ( )k

RZTf z


. By 

using the strain-displacement relations (Eqs. (2)), the shear strain deformation read as 

 ( ) ( ) ( )

, 1k k k

RZT RZTw
                   (4) 

where ( )k

RZT
 denotes the first derivative with respect to the thickness coordinate of ( ) ( )k

RZTf z


, 

and the strain measure ,w        is introduced. According to Eqs.(3), the transverse 

shear stress follows 

 ( ) ( ) ( ) ( )1k k k k

z RZTQ Q
           (5) 

The transverse shear stress in Eq.(5) are composed by two contribution: the first is zigzag 

function-independent, ( )kQ  , whereas the second,  ( ) ( )1k k

RZTQ
   , is related with the 

zigzag function by means of its derivative with respect to the thickness coordinate, 
( )k

RZT
 . 

According to the RZT [10], the continuity condition at layers interfaces of the zigzag-

dependent transverse shear stress (when   ) is enforced, that is the second contribution on 

the right hand side of Eq. (5) is stated to be constant and equal to G . In formula 

 ( ) ( )1k k

RZTQ G
    (6) 

Solving Eq.(6), the first derivative of the zigzag function reads 

( )

( )
1k

RZT k

G

Q





    (7) 

where the constant G is a weighted –average transverse shear stiffness coefficient of their 

respective lamina-level coefficients 
( )kQ . For sake of brevity, only the final expression is 

given for G , that is  

1

( )

1

2

h

k

h

dz
G

h Q








 
  
 

  (8) 

To completely define the zigzag function ( ) ( )k

RZTf z


, the zero-condition at the top and bottom 

plate surface is enforced, that is 

( ) ( )( ) ( ) 0k k

RZT RZTf z h f z h
 

      (9) 

 

 Readers interested to a detailed derivation of the RZT-F can refer to [10]. 
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2.2 Murakami’s zigzag function 

Murakami [5] derived his zigzag function based on the distribution of the in-plane 

displacements along the thickness of periodic laminates. For this reason, the MZZ-F reflects a 

periodic nature, that is it oscillates between the values -1 and +1. The MZZ-F reads as 

( ) ( )( ) ( 1)k k k

MZZf z


   (10) 

where  ( ) 1, 1k    is a local nondimensional thickness coordinate of kth lamina, defined as 

 ( ) ( ) ( )k k k

mz z h    where 
( )k

mz is the distance of the kth layer mid-plane from the reference 

plane. Figure 2 compares the two zigzag functions for a three-layer laminate. 

 
Figure 2. Comparison on the through-the-thickness distribution of zigzag functions. 

3 GOVERNING EQUATIONS 

The plate represented in Figure 1 is subjected to a transverse pressure loading, ( , )q tx , 

applied on the midplane mS , to surface tractions, 1 ( , )tp tx  and 2 ( , )tp tx , acting on the top 

surface, and 1 ( , )bp tx  and 2 ( , )bp tx , acting on the bottom surface. Traction stresses, 
1 2( , , )zT T T , 

are also prescribed on S .The non-linear (in the Von Kàrmàn sense) plate governing  

equations and boundary conditions are derived from the D’Alembert’s principle and read as 

[17] 

 
, 0 1 0 , 1 2 1

, 0 1 2 , , , 0,

f f

f f ff f

N p I u I I M Q m I u I I

M Q I u I I Q N w q I w

 

  

            

           

   

 

        

      
 (11) 

where the force and moment stress resultants, the mass moments of inertia and the external 

loads are defined as 

       

       

( ) ( ) ( ) ( ) ( )

2
( ) ( ) ( ) ( )

2

, , 1, , ( ) ;   , ,

, 1, ( ) ;   ( ) ;  ;   

h h

k k k k k

z z

h h

h h

f fk j k k k t b t b

j j

h h

N M M z f z dz Q Q dz

I I z f z dz I f z dz p p p m h p p 

 

         

       

   

 

 

 

 

     

 

 

 (12) 

The D’Alembert principle leads also to the variationally consistent boundary conditions 

z

x

( ) ( )k

RZTf z


z

xx

-1 +1

( ) ( )k

MZZf z

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 ,

 on    on  on   on 

 on  on  on     on 

nnu u

f
f

n znu u

u u C N n N C C M n M C

C M n M C w w C Q n N w n V C

         

          

 

 

     

      
 (13) 

wherein the force and moment of the prescribed tractions are 

   ( )
1, , , , , ,

h
f

k
n n zn zn

h

N M M V T zT f T T dz    



   (14) 

By Introducing Eqs.(2) and Eqs.(3) in Eqs.(12) and integrating, the model constitutive 

equations are derived.  

4 NUMERICAL RESULTS 

In order to compare the two zigzag functions, the bending, free vibrations and buckling 

problems of square sandwich plates are solved. 

Mechanical properties of materials and stacking sequences taken into consideration are 

listed in Tables 1 and 2. 

 
Table 1. Mechanical properties of materials; elastic moduli are expressed in GPa, the density in kg/m

3
. 

Material 
( ) ( ) ( )

1 2 3, ,k k kE E E  
( ) ( ) ( )

12 13 23, ,k k k    
( ) ( ) ( )

12 13 23, ,k k kG G G  ( )k  

C 50,10,10 0.25, 0.25, 0.25 5,5,5 - 

N 10
-5

, 10
-5

,75.85×10
-3

 0.01,0.01,0.01 22.5×10
-3

,22.5×10
-3

,22.5×10
-3

 - 

B 276, 6.9, 6.9 0.25, 0.25, 0.3 6.9, 6.9, 6.9 681.8 

H 0.5776,0.5776, 0.5776 0.0025, 0.0025, 0.0025 0.1079, 0.1079, 0.22215 1000 

G 19,1,1 0.32,0.32,0.49 0.52.0.52,0.338 - 

P 3.2×10
-5

, 2.9×10
-5

,0.4 0.99, 3×10
-5

, 3×10
-5

 2.4×10
-3

, 7.9×10
-2

, 6.6×10
-2

 - 

 
Table 2. Laminate stacking sequences (from bottom to top surface). 

Laminate Normalized lamina thickness, 2h
(k)

/2h Lamina materials Lamina orientation 

L1 (0.1/0.8/0.1) (C/N/C) (0°/Core/0°) 

L2 (0.05/0.05/0.8/0.05/0.05) (C/C/N/C/C) (0°/90°/ Core /90°/0°) 

L3 (0.5tf/0.5tf/tc/0.5tf/0.5tf) (B/B/ H/ B/ B) (90°/0°/Core/90°/0°) 

L4 (0.1tf/0.1tf)5/tc/(0.1tf/0.1tf)5 (G/ G)5/ P/( G/ G)5 (0°/90°)5/Core/(90°/0°)5 

 

4.1 Linear bending 

The numerical results reported in this section pertain the linear boundary value problem of 

bending of simply supported square sandwich plates subjected to bi-sinusoidal transverse 

pressure. Two sandwiches are considered (laminate L1 and L2), made by the same materials 
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for faces and core but with different stacking sequence. Figure 3 compares the through-the-

thickness distribution of normalized in-plane displacements and normalized transverse shear 

stresses obtained by the RZT and the MZZ. In order to assess the benefit given by the 

inclusion of a zigzag function in the FSDT kinematic, results obtained with the FSDT 

adopting a suitable shear correction factor are also presented. The reference solution is the 

exact Elasticity solution as derived by Pagano [18]. 

 

 
Figure 3. Laminate L1, a/2h=6: through-the-thickness distribution of normalized in-plane displacement, 

 4 4 ( )

11 010 kU D q a U   and normalized transverse shear stress,  2 ( )

02 k

z zh q a   . The FSDT solution is 

obtained with kx
2
= ky

2
=0.022. 

If compared with the reference solution, both RZT and MZZ provides accurate results for 

the in-plane displacements and transverse shear stresses, obtained by integration of the 

equilibrium equations. Instead, the FSDT is not able to follow the exact solution. 

By changing the stacking sequence, the laminate L2 is obtained. For this laminate, 

distribution along the laminate thickness of normalized in-plane displacements and integrated 

transverse shear stresses are shown in Figures 4. 
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Figure 4. Laminate L2, a/2h=6: through-the-thickness distribution of normalized in-plane displacement, 

 4 4 ( )

11 010 kU D q a U  and normalized transverse shear stress,  2 ( )

02 k

z zh q a   . The FSDT solution is 

obtained with kx
2
= 0.0242, ky

2
=00225. 

Considering results in Figure 4, the RZT preserves its great accuracy if compared with the 

Elasticty solution demonstrating an adaptive behavior. On the contrary, MZZ leads to 

significant error since the solution fits with the FSDT one in every z location. 

For laminate L2, a comparison on the normalized maximum deflection for several values 

of the span-to-thickness ratio, a/2h, is in Table 3. Solution obtained with the FSDT adopting 

an adequate value of the shear correction factor [17] and a unit one is listed. Comparison 

performed in Table 3 demonstrates the great accuracy of RZT for every value of a/2h since its 

solution is in agreement with the reference one. The FSDT improves its accuracy if a suitable 

shear correction factor is adopted, even if the through-the-thickness distributions of in-plane 

displacements and transverse shear stresses are far from the exact pattern (see Figure 4). The 

MZZ predicts the same deflections than the FSDT model with unitary shear correction factor. 

In fact, the only difference between this two model relies on the zigzag contribution. If the 
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zigzag function used is not well established, the zigzag contribution tends to vanih thus 

leading the MZZ to coincide with the FSDT model with kx
2
= ky

2
=1. 

Table 3. Laminate L2: normalized maximum deflection,
 

2 4

11 0(10 / ) ( / 2, / 2)w D q a w a b ; k
2
 is the shear 

correction factor. 

a/2h 3D-Elasticity RZT MZZ 

FSDT 

kx
2
= 1; ky

2
 = 1 

kx
2
 = 0.0242 

ky
2
 = 0.0225 

6 8.038 8.040 0.573 0.573 8.243 

10 3.254 3.253 0.456 0.456 3.217 

20 1.118 1.118 0.406 0.406 1.097 

50 0.507 0.507 0.392 0.392 0.503 

100 0.419 0.419 0.390 0.390 0.418 

 

The bending problems solved in this section remark the periodic nature of the MZZ-F and 

its limited applicability only to periodic laminates (like the L1 lamiante) whereas the MZZ-F 

becomes complitely inadequate for those laminates without a periodic stacking sequence (like 

the L2 laminate).  

4.2 Free vibrations 

In this section, the problem of undamped free vibration problem of fully clamped square 

sandwich plate is solved. For this kind of boundary condition, the exact RZT and MZZ 

solution do not exist and an approximate one has been developed by using the Rayleigh-Ritz 

method. For the details, refer to [17].  

Table 4 lists the first six natural frequencies obtained by means of the RZT, MZZ model 

and the FSDT adopting both an adequate and a unit value shear correction factor. Results 

from a three-dimensional finite element analysis [19], are assumed as reference in the 

comparison. 

Results in Table 4 demonstrate the superior predictive capabilities of RZT that preserves 

its accuracy changing the boundary conditions, stacking sequence and nature of the problem. 

The FSDT model is able to provide results close to the reference ones only if an appropriate 

shear correction factor is used; when the unit value is assumed for kx
2
 and ky

2
, relative error 

greater than the 140% since the first natural frequency is obtained. The erroneous 

overestimation of the natural frequencies concerns also the MZZ that provides the same 

results than the FSDT with unit shear correction factors. As for the bending problem of 

laminate L2, laminate L3 is not a periodic one then the MZZ-F is not adequate to simulate the 

elastic behavior of this laminate. 
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Table 4. Laminate L3, a/2h=10, core-to-face thickness ratio, tc/tf=8: comparison on the first ten non-dimensional 

circular frequencies,   1100mp mp c fa E   , where 
c  is the mass density of the core and 1 fE

 
is the 

longitudinal Young’s modulus of the face. 

Mode: m,p 3D FE [19] RZT MZZ 

FSDT 

kx
2
=1;ky

2
=1 kx

2
=0.0834; 

ky
2
=0.1445 

1,1 11.22 11.44 27.76 27.76 11.18 

2,1 16.68 16.46 45.03 45.03 16.09 

1,2 18.96 19.81 45.71 45.72 19.05 

3,1 22.71 22.92 58.11 58.11 22.20 

2,2 23.53 23.16 67.32 67.32 22.36 

3,2 28.07 28.19 68.77 68.77 27.11 

 

4.3 Linear buckling 

In this section, the linearized problem of buckling of a simply supported square sandwich 

plate subjected to a compressive load, 
1N  , is solved. It is assumed that the plate remains flat 

during the pre-buckling equilibrium state and that the external in-plane stress resultants vary 

neither in magnitude nor in direction during buckling. For details on the solution procedure, 

readers can refer to [17]. 

Table 5. Laminate L4: comparison of uni-axial overall buckling load parameter,  2 3

1 1 2

cr

fn N b E h  where 
1

crN  

is the uniform uni-axial critical load and 
2 fE  is the transverse Young’s modulus of the face. 

tf/2h 0.025 0.05 0.1 

a/2h 5 10 20 5 10 20 5 10 20 

3D [20] 1.503 2.238 2.554 2.082 3.737 4.659 2.605 5.608 7.897 

RZT 1.539 2.263 2.566 2.115 3.765 4.681 2.628 5.633 7.921 

MZZ 1.676 2.334 2.588 2.509 4.108 4.806 3.517 6.905 8.474 

FSDT          

kx
2
= ky

2
 

=1 
1.682 2.337 2.589 2.622 4.122 4.811 4.029 6.952 8.491 

kx
2
, ky

2
 1.539 2.263 2.566 2.116 3.767 4.682 2.620 5.638 7.926 

 (kx
2
=0.820, ky

2
=0.782) (kx

2
=0.697, ky

2
=0.643) (kx

2
=0.541, ky

2
=0.479) 
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In Table 5, results on the overall uni-axial buckling load parameters obtained with the 

RZT, MZZ and FSDT are listed. A 3D solution [20] is taken as reference in the comparison. 

The results investigate also the effect of the face-to-thickness ratio, tf/2h, and the span-to-

thickness ratio, a/2h. 

The RZT results fits with the reference solution on the entire range of face-to-thickness and 

span-to-thickness ratio considered. The FSDT allows prediction of the buckling load 

parameter of the same RZT accuracy only when a suitable shear correction factor is 

implemented. Instead, the FSDT with a unit shear correction factor leads to errors, up to 7,5 

%, that decrease with the reduction of the face-to-thickness ratio as the sandwich tends to 

become a single layer plate, made only by the core. When the MZZ model is used, results in 

agreement with the FSDT with a kx
2
= ky

2
 =1 are obtained as result of the non periodicity of 

the sandwich. Then, also in this case, the MZZ-F reveals not adequate zigzag function. 

5 CONCLUSIONS 

The aim of this paper is to compare the capabilities of the two zigzag functions available in 

literature (the Refined Zigzag Theory function, RZT-F, and the Murakami’s zigzag one, 

MZZ-F) in predicting response of sandwich plates, both simply supported and clamped, 

covering a lack in the open literature. 

The zigzag functions are involved in the formulation of a general first-order zigzag model,  

wherein the First-Order Shear Deformation (FSDT) kinematic is enriched by adding a zigzag 

contribution, given by the product of a zigzag amplitude and a zigzag function. Depending on 

the zigzag function adopted, two first-order zigzag models are obtained.  

Results reported for the bending, free vibrations and buckling load problems demonstrate 

superior predictive capabilities of the first-order zigzag model employing the RZT-F over that 

adopting the MZZ-F. The MZZ-F provides results accurate as those of the RZT-F only for 

periodic laminates. When the periodic structure of the stacking sequence is removed, the first-

order zigzag model using the MZZ-F leads to an heavily underestimation of the maximum 

deflection and overestimation of natural frequencies and buckling loads. It is worth to note 

that when the non periodic laminates are considered, the first-order zigzag model adopting the 

MZZ-F leads to the same results provided by the FSDT adopting a unit shear correction 

factor. In fact, if the zigzag function is not adequate, the zigzag rotation becomes small 

enough to get the zigzag correction almost ineffective on the FSDT. Then, the first-order 

zigzag model using the MZZ-F and the FSDT, with a unit shear correction factor, tend to be 

the same model.  

By considering the numerical results presented in this work, contrary to the wide use 

established in the open literature, the authors strongly recommend the adoption of the Refined 

Zigzag function, instead of the Murakami’s one, in modeling the laminate and sandwich 

structures. 
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