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Abstract. This paper describes the main ingredients of an efficient simulation tool for
blade flutter in turbomachinery. The unsteady flow is modelled by the linear harmonic
equations. Special emphasis is put on the extension of existing CFD methods for unstruc-
tured mesh topologies and non-matching block interfaces.

INTRODUCTION

This paper describes the implementation of a solver for the linearised three-dimensional,
Reynolds-averaged Navier-Stokes equation in the frequency domain on structured and un-
structured meshes. Linear harmonic methods are particularly attractive to simulate blade
flutter in turbomachinery. In order to apply linear techniques to complex configurations,
e.g., computational domains with cavities as shown in Fig. 1, the authors extend an ex-
isting solver which, on the one hand, provides a structured linearised solver module [8],
[3], and, on the other hand, a non-linear solver for hybrid meshes, i.e., meshes which
decompose into structured and unstructured blocks [16].

The linear harmonic (sometimes called time-linearised) approach [5] consists in linearis-
ing of the unsteady flow equation around a steady solution and formulating the system
in the frequency domain, which results in a complex linear equation for each angular
frequency.

In the first sections of this paper we outline the main ingredients of an efficient tool
chain for turbomachinery flutter simulations. This includes a preprocess tool for mesh
deformations but also crucial CFD solver features such as nonreflecting boundary condi-
tions. These methods have been implemented by the authors in DLR’s simulation code
for internal flow, TRACE, [15, 8, 3]. However, previous publications all referred to im-
plementations for structured meshes.
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Figure 1: Turbine configuration with cavities.

Therefore, the main purpose of this work is to describe the extension of the above
methods for hybrid meshes, i.e., of meshed which can be decomposed into structured and
unstructured blocks. In particular, we show how to compute and store the flux Jacobians
involved. It is verified that the resulting time-linearised unstructured solver is indeed of
second order spatial accuracy. Another key ingredient necessary to mesh geometry details
such as cavities in turbomachinery are unstructured block cuts. Their treatment in the
linearised solver is outlined.

1 LINEAR HARMONIC FLOW EQUATIONS

The CFD code under consideration solves the Reynolds-averaged Navier-Stokes equa-
tions on so-called hybrid meshes using domain decomposition, i.e., the computational
grids consist of structured and unstructured blocks. The parallelisation uses MPI to
communicate flow states in neighbouring blocks to so-called ghost cells.

In analogy to the so-called discrete adjoint methodology [10] the linearisation approach
applied here can be termed discrete linear. More precisely, we do not discretise the
linearised flow equations but linearise the discrete URANS equations implemented in the
nonlinear time-domain solver,

dq

dt
+R(t, q(t)) = 0. (1)

The underlying flow solver is based on the finite volume approach, i.e., the residual in the
i-th cell is defined as

Ri =
1

Vi

∑
σ∈ci

Fσ(q)− Si(q) (2)
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where appropriate numerical flux functions Fσ are defined for each face. Since the flow
equations are formulated in the relative system, rotational source terms appear which are
denoted by Si. Here, q is the vector of conservative variables and t denotes the physical
time. Assuming that the unsteady flow is the perturbation of a steady flow by a harmonic
disturbance with angular frequency ω, we may approximate the solution by

q(t) = q̂0 + Re
[
q̂ωe

iωt
]
, (3)

cf. [2, 8]. Under the assumption that the amplitudes |q̂ω| are small, one may approximate
R by its linearisation, i.e.

R(q(t)) ≈ ∂R

∂q
Re
[
q̂ωe

iωt
]

= Re

[
∂R

∂q
q̂ωe

iωt

]
. (4)

Here, we have used the fact that the time-average q̂0 is an approximate solution to the
steady equations, i.e.

R(q̂0) ≈ 0.

We infer, (
iω +

∂R

∂q

)
q̂ω = 0. (5)

These so-called time-linearised flow equations are particularly appealing for applications
where:

• The unsteady perturbations are small, therefore the linearisation error is expected
to be acceptable.

• One is interested in one (or a few) frequencies only, so the full temporal resolution
of a period is unnecessary.

2 BOUNDARY CONDITIONS

On the one hand, the solution problem for Eqn. (5) is less complex than the integration
of the unsteady system in Eqn. (1). However, a further advantage of frequency domain
methods is that phase-lagged periodic boundary conditions and non-reflecting boundary
conditions can be implemented directly in the frequency domain. These two boundary
conditions are essential for unsteady simulations of turbomachinery flows. Their imple-
mentation constitutes a challenging problem in the time domain [13, 7]; e.g. subtle ap-
proximations are neccessary to implement well-posed non-reflecting boundary conditions
in the time domain [4].

In the frequency domain, the phase-lagged periodicity condition reads

q̂ω(θ + ∆θ) = eiσ q̂ω(θ),
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for an interblade phase angle of σ and a pitch angle of ∆θ. Note that this is merely a
slight modification of the standard periodic condition.

The implementation of nonreflecting boundary conditions here is based on the assump-
tion that the faces at the inlet and outlet boundary can be decomposed into so-called
bands, i.e., rotationally symmetric annular segments [3, 7].

3 MESH DEFORMATIONS

The standard approach to simulate turbomachinery blade flutter is to predict the
unsteady flow under a prescribed blade vibration. Usually, one considers the first few
eigenmodes which have been obtained from a structural mode analysis of the blade. Since
the finite element grids typically use a different mesh resolution for the blade surfaces
than the CFD one has to interpolate the blade eigenmodes between the grids. Once the
eigenmodes are mapped to the CFD surface mesh, an elliptic mesh deformation method is
employed in order to obtain a corresponding grid displacement. These two process steps
are part of DLR’s preprocessing tool PREP [15].

Figure 2: Process Chain for Aeroelastic Analysis.

In order to simulate flows on moving meshes the numerical flux functions are modified,

F ′
σ(q, x, ẋ) = Fσ(q, x)− ẋσ · ~nσ |σ|q,

where ~nσ and ẋσ denote the outward pointing normal vector and the velocity of the face
σ, respectively. Given a harmonic mesh deformation

x(t) = x̂0 + Re
[
x̂ωe

iωt
]

the linear harmonic flow equations(
iω +

∂R

∂q

)
q̂ω = −

[
∂R

∂x
x̂ω +

∂R

∂ẋ
iωx̂ω + iω

q̂0

V̂0
V̂ω

]
, (6)

are solved using the GMRES method. From the harmonic solution q̂ω one calculates the
aerodynamic work, cf. [8]. Figure 2 gives an overview of the tools involved. The linear
harmonic flow solver has been validated for different test cases such as the 10th standard
configurations against reference solutions obtained with different solvers [11], see Figure 3.
Further comparisons with reference results may be found in [8].
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Figure 3: Aerodynamic Damping over Interblade Phase Angle for Standard Configuration 10.

4 HYBRID MESHES

One difficulty in the present approach is the linearisation of the numerical residuals,
defined in Eqn. (2). These are based on the finite volume approach using Roe’s upwind
scheme [12] which is extended to second order accuracy using van Leer’s MUSCL ex-
trapolation technique [14] on structured blocks. Similarly, on unstructured meshes the
flow gradients at cell centres are calculated using the Green Gauss formulation or least
squares approximations. The flow gradients are used to extrapolate second order accu-
rate left and right states for the Roe scheme. Furthermore, appropriate limiters for the
structured and unstructured schemes are employed to prevent spurious oscillations in the
vicinity of shocks.

Viscous terms are based on gradients which, in turn, are computed from second-order
accurate finite differences on structured meshes, or the (unlimited) gradients on unstruc-
tured meshes, respectively. Further details may be found in [9] and [1]. Turbulence models
are used to compute steady flows but are frozen in the linear harmonic mode.

Both for structured and unstructured grids the Jacobian of the residual,

∂Ri

∂q
=

1

Vi

∑
σ∈ci

∂Fσ
∂q
− ∂Si

∂q
, (7)

is, apart from the source term Jacobian, essentially the weighted sum of the Jacobians of
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cij

ci(j+1) c(i+1)(j+1)

c(i+1)j c(i+2)j

ci

Figure 4: Stencil for the second order Navier-Stokes residual on structured (left) and unstructured
(right) meshes.

convective and viscous fluxes

Fσ,conv(qL, qR) + Fσ,visc((∇q)σ) (8)

where the former is based on Roe’s scheme. The so-called left and right states are based
on second order accurate extrapolation schemes, i.e., on structured grids,

qL = qi +
1

2
(∆̃q)L, qR = qi+1 −

1

2
(∆̃q)R (9)

whereas, on unstructured grids, we have

qL = qi + (∇̃q)L · (xσ − xi), qR = qi′ + (∇̃q)R · (xσ − xi′). (10)

Here, ∆qL/R is the approximation of the derivative w.r.t. the mesh coordinate which is

transversal to the face σ. ∇qL/R denote the cell-centred gradients. By ∆̃qL/R and ∇̃qL/R
we denote the limited slopes and gradients, respectively [6, 1].

In the simplest form, the viscous flux is computed from cell centred gradients using
interpolated face gradients, i.e.

(∇q)σ = wL(∇q)L + wR(∇q)R. (11)

Typical stencils for structured and unstructured grids are shown in Fig. 4. The neighbour-
ing cells which are employed for a first order stencil of the inviscid fluxes are plotted in
grey. The cells which are needed for the face (structured) or Gauss Green (unstructured)
gradients are marked in brown. Moreover, for structured grids, the second order MUSCL
extrapolation uses the cells marked in blue.

For structured meshes we build the sparse block matrix containing all residual Jaco-
bians

∂Ri

∂qi′
. (12)
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The left diagram in Figure 4 shows the stencil in two dimensions. The i-th residual
depends on cells which influence the MUSCL extrapolation and those needed for the face
gradients used in the viscous flux computations. In three dimensions the stencil size
is therefore 25. In order to approximate (12) on structured blocks we compute a central
finite difference of the residuals w.r.t. the primitive variables in all cells of this stencil. The
resulting 5 × 5-matrices are subsequently transformed to derivatives w.r.t. conservative
variables [8]. Observe that the residual in each structured block depends on two layers of
ghost cells. Therefore, in order to apply the linearised residual to a vector that corresponds
to a harmonics flow field, one has to communicate two layers of interior cells and set the
boundary conditions [3].

The above methodology for structured grids does not carry over to unstructured grids
since the mesh topology of the remote block is unknown in the local block. In order to
circumvent this problem we therefore consider the unstructured residual first as a function
of the cell centres and the flow gradients in the neighbouring cells. By virtue of Eqns. (10)
and (11) we approximate

∂Fσ
∂qcc

,
∂Fσ

∂(∇xq)
,

∂Fσ
∂(∇yq)

,
∂Fσ

∂(∇zq)
, (13)

again by central finite differences. Observe that this results in four sparse block matrices
with a band width that corresponds to a direct neighbour stencil.

In order to apply the residual Jacobian to a harmonic flow field q̂ω four matrix vector
multiplications are performed,

∂R

∂q
q̂ω =

∂R

∂qcc
q̂ω +

∂R

∂(∇xq)
∇xq̂ω +

∂R

∂(∇yq)
∇y q̂ω +

∂R

∂(∇zq)
∇z q̂ω. (14)

However, in order to apply the operators on the right-hand side of Eqn. (14), the interblock
communication has to be modified. First the cell centred values are communicated such

Figure 5: Harmonic solution for the measurement of numerical dissipation.
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that the flow gradients in all inner cells can be computed. Then the inner flow gradients
are copied to the ghost cells in a subsequent communication step.

Note that, for structured grids, the preconditioner for the GMRES solver is computed
from the sparse matrix corresponding to the second order accurate spatial scheme. In
contrast to this, the preconditioner for unstructured blocks is computed from ∂R

∂qcc
only,

which can be viewed as an inviscid first order residual Jacobian.
In order to demonstrate that the spatial discretisation order is conserved for the lin-

earised solver, a numerical experiment is performed where a harmonic, acoustic perturba-
tion is prescribed at the inlet of a rectangular block with constant mean flow, see Fig. 5.
By varying the angular frequency of the disturbance this test is performed for different
numbers of cells per wave length. The mesh is structured but is also converted into an
unstructured hexahedra mesh in order to compare the structured and unstructured linear
harmonic solver. The results for the first and second order spatial accuracy are plotted
in Fig. 6. The comparison with reference lines of first and second order show that the
design accuracy is indeed achieved. Moreover, the dissipation error of the structured
discretisation seems to decrease slightly faster than that of the unstructured scheme.
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Figure 6: Numerical dissipation of the structured and unstructured scheme for a hexahedral mesh.
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Figure 7: Clipping algorithm for non-matching block interfaces.

5 NON-MATCHING BLOCK INTERFACES

One of the key techniques developed for the hybrid mesh RANS solver is a conservative
and second-order accurate coupling algorithm developed for non-matching block interfaces
[17]. Figure 7 shows an example of the interface between two grids.

The first step of this coupling method is purely geometric and consists in determining
which faces intersect and computing the area of the intersection, area(σi,own ∩ σj,opp).
These give rise to the interpolation weights

wij =
area(σi,own ∩ σj,opp)

area(σi,own)

In the nonlinear solver these intersection areas are then used to exchange cell centred flow
states, MUSCL-extrapolated states and numerical fluxes such that the resulting scheme
shares the main features with the standard scheme at inner faces. In particular, the same
slope limiters, Roes upwind fluxes and central differencing formulations are applied to
evaluate the convective and viscous fluxes, respectively. In order to achieve a conservative
formulation the numerical fluxes are computed locally, communicated to the opposite
block, interpolated using the weights wij above, and replaced with the average of local
and remote fluxes.

The non-matching block interface has been implemented in the linearised solver for first
order spatial accuracy only. Moreover, the viscous fluxes are based on the so-called thin
shear layer approximation, i.e., the flux through a face σ depends on the neighbouring
cells only. The linearisation of the cell residuals is calculated for block boundary cells
in the same way as for inner cells. The harmonic flow vectors are communicated to
neighbouring blocks. At non-matching block interfaces the interpolation weights wij are
used to compute harmonic flow states in the ghost cells. Figure 8 shows the steady and
linear harmonic solutions for the flutter analysis of a turbine blade near a non-matching
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Figure 8: Mach number contours of steady solution (left) and harmonic pressure (right).

periodic block connectivity. In both cases the contour lines (dark grey lines), show that
the solutions are “continuous” across the block boundaries (black lines).

SUMMARY AND CONCLUSIONS

This paper summarises the main features necessary to make efficient flutter predictions
for turbomachinery blades. For this purpose the linear harmonic approach is particularly
attractive since it allows for a straightforward implementation of phase-lag periodicity
and nonreflecting boundary conditions, which are key features necessary to accurately
simulate unsteady flows in turbomachinery.

In order to perform high fidelity simulations it is desirable to allow for an accurate
and flexible meshing of geometric features such as clearances, blade fillets, bleedings, and
cavities. In this paper an existing aeroelastic tool chain for turbomachinery applications is
generalised in such a way that both structured and unstructured meshes can be employed.
Moreover, unstructured block interface have been implemented for configurations where
the meshing with one-to-one connectivities turns out to be unfeasible.
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