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Abstract. In the contribution, the homogenization techniques of spatial varying 
(continuously or discontinuously) material properties for the Functionally Graded Material 
(FGM) beams and shells are presented. The expressions are proposed for derivation of the 
effective elastic, thermal and electrical material properties by the extended mixture rules and 
laminate theory, and by the direct integration method. The results of numerical experiments 
are evaluated and disscussed. 

 

1 INTRODUCTION 

Important classes of structural components, where a functionally graded material (FGM) is 
used, are beams and shells. FGM beams and shells play an important role not only in 
structural applications, but there are many applications in design of thermal-elastic, electric-
thermal or electric-thermal-structural systems (e.g. MEMS like sensors and actuators, and 
other mechanical and mechatronic systems). In all these applications, using new materials like 
FGM can greatly improve the efficiency of a system. FGM is built as a mixture of two or 
more constituents which have almost the same geometry and dimensions. From a 
macroscopic point of view, the FGM is isotropic in each material point but the material 
properties can vary continuously or discontinuously in one, two or three directions. The 
variation of macroscopic material properties can be caused by varying the volume fraction of 
the constituents or with varying of the constituents material properties (e.g. by a non-
homogeneous temperature field). 

One important goal of mechanics of heterogeneous materials is to derive their effective 
properties from the knowledge of the constitutive laws and complex micro-structural behavior 
of their components. Microscopic modeling expresses the relation between the characteristics 
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of the components of the composite and the average (effective) properties of composites. In 
the case of FGM it is the relation between the characteristics of the components and the 
effective properties of FGM. 
The methods based on the homogenization theory (e.g. the mixture rules [1], [2]; self-
consistent methods [3]) have been designed and successfully applied to determine the 
effective material properties of heterogeneous materials from the corresponding material 
behavior of the constituents (and of the interfaces between them) and from the geometrical 
arrangement of the phases. In this context, the microstructure of the material under 
consideration is basically taken into account by representative volume element (RVE). 

Mixture rules are one of the methods for micromechanical modeling of heterogeneous 
materials. Improved mixture rules [4] are based on the assumption that the constituents 
volume fractions (formally denoted as fibres – f and matrix – m) continuously vary as the 
polynomial functions:  zyxvf ,,  and  zyxvm ,. . The condition     1,,,,  zyxvzyxv mf  must 

be fulfilled. Appropriated material property distribution in the real FGM is then 

          zyxpzyxvzyxpzyxvzyxp mmff ,,,,,,,,,,   (1) 

Here,  zyxpf ,, and  zyxpm ,,  are the spatial variations of material properties of the FGM – 

constituents. The assumption of the polynomial variation of the constituent’s volume fractions 
and material properties enables an easier establishing of the main appropriated field equations 
and allows the modeling of many common realizable variations. An exponential law for 
variation of the volume fractions is also very often presented, e.g. [5], [6], [7] and many 
others. 

In the literature and in the practical applications mostly the one directional variation of the 
FGM properties is presented. By the FGM beams and shells the transversal variation 
(continuously or discontinuously, symmetrically or asymmetrically) has been mainly 
considered. The homogenization of such material properties is relative simple. If the material 
properties varies only in longitudinal direction of the beams, the homogenization is not 
needed because there were new beam finite elements established, which consider such 
variations by very accurate and effective way [8], [9].  

In the contribution, the selected homogenization techniques of spatial varying 
(continuously or discontinuously, symmetrically or asymmetrically) material properties for 
the FGM beams and shells are presented. The expressions are proposed for derivation of the 
effective elastic, thermal and electric material properties by the extended mixture rules and 
laminate theory, and by the direct integration method.  

2 HOMOGENIZATION OF THE FGM BEAM 

 In the 2D beam finite element application the transversal and longitudinal variations of 
material properties are considered. The elasticity modules, the Poisson’s ratio, the thermal 
expansion coefficient, the thermal and electrical conductivity, and the mass density are 
homogenized by extended mixture rules and laminate theory, and by the direct integration 
method. 
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2.1 Homogenization for the 2D beam applications by the multilayer method and 
laminate theory 

Let us consider a two nodal straight beam element with predominantly rectangular cross-
sectional area A and quadratic moment of inertia I (Figure 1). The following approach can be 
used also for other cross-sectional area types. The composite material of this beam arises from 
mixing two components (formally denoted as matrix – m and fibres – f ) that are 
approximately of the same geometrical form and dimensions (for example made by powder 
metallurgy or plasma spraying). 
Both the fibres volume fraction  ,fv x y  and matrix volume fraction  ,mv x y  are chosen as a 

polynomial function of x, and with continuous and symmetrical variation through its height h 
with respect to the neutral plane of the beam element. The volume fractions and material 
properties of the FGM constituents are assumed to be constant through the cross-section depth 
b. At each point of the beam it holds:    , , 1f mv x y v x y  . The values of the volume 

fractions at the nodal points are denoted by indices i and j. 

 
Figure 1: FGM beam with spatial variation of material properties 

Material properties of the constituents (fibres –  ,fp x y  and matrix –  ,mp x y ) can vary 

analogically (depending on inhomogeneous temperature field for example) as it was stated by 
variation of the volume fractions. A chosen FGM property in real beam  ,p x y  can be 

expressed as a function of the spatial varying volume fractions and material properties of 
FGM constituents 
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          , , , , ,f f m mp x y v x y p x y v x y p x y   (2) 

For example, the planar varying elasticity modulus is [9], [10]: 

          yxEyxvyxEyxvyxE mfff ,,,,,   (3) 

There  ,fE x y  is the varying elasticity modulus of the fibres, and  ,mE x y  is the varying 

elasticity modulus of the matrix. By the same way the Poisson’s ratio  yx,  can be 
calculated. Then, the shear modulus reads 

 
 
  yx

yxE
yxG

,12

,
),(


  (4) 

If the constituents Poisson’s ratio are approximately of the same value and the constituents 
volume fraction variation is not much strong, then the FGM shear modulus can by calculated 
using a simplification  

    


yxE
yxG

,
,   (5)  

where  is an average value of the function     yxyx ,12,    

   dxdyyx
hL

L
h

h
  











0

2/

2/

,
11   (6) 

Following, the electrical conductivity  yx, , thermal conductivity  yx, , and the thermal 
expansion coefficient  yxT ,  can be calculated by (2), as well. 

Homogenization of the material properties (the reference volume is the volume of the 
whole beam) will be done in two steps. In the first step, the real beam (Figure 1a) will be 
transformed into a multilayer beam (Figure 1b). Material properties of the layers will be 
calculated with the extended mixture rules [8]. Each layer will have constant volume fractions 
and material properties of the constituents through the beam height. They are calculated as an 
average value from their values at the boundaries of the respective layer. Polynomial variation 
of these parameters will appear in the longitudinal direction. Sufficient accuracy of the 
proposed substitution of the continuous lateral variation of material properties by the layer-
wise constant lateral distribution of material properties will be reached when the division to 
layers is fine enough. In the second step, the effective longitudinal material properties of the 
homogenized beam will be derived using the laminate theory. These homogenized material 
properties are constant through the beam height but they vary continuously along the 
longitudinal beam axis. Accordingly, the beam finite element equation will be established for 
the homogenized beam (Figure 1c) in order to calculate the primary effective beam unknowns 
(the displacements, temperatures, electric potential, eigenfrequency, etc…). 
One thin layer of the composite or FGM is depicted in Figure 2. Constant rectangular cross-
sectional area of the layer has been assumed. The layers length is L. Longitudinal variation of 
the constituent volume fractions and longitudinal variation of the constituent material 
properties have been considered. These parameters will be considered constant through the 
layer height and width. The fibres (constituent 1) volume fraction  fv x  is described by 

polynomial function of x: 
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      1 1 k
f m fi vf fi vfk

k

v x v x v x v x  
     

 


 
 (7) 

The matrix (constituent 2) volume fraction  mv x  is then 

     1 1 k
m f mi vm mi vmk

k

v x v x v x v x  
     

 
  (8) 

where fv  and mv  are the fibre and matrix volume fractions at node i, respectively.  vf x and 

 vm x  are the polynomials of fibre and matrix volume fractions variation, respectively. 

Constants 
vfk  and vmk , (k = 1, r), and the order r of these polynomials depend on the fibres 

and matrix volume fractions variation.  

 
Figure 2: One thin layer of the FGM 

Also the fibre material property  fp x  and the matrix material property  mp x are chosen as 

a polynomial function of x : 

     1 k
f fi pf fi pfk

k

p x p x p x  
   

 
  (9) 

     1 k
m mi pm mi pmk

k

p x p x p x  
   

 
  (10) 

where fip  and mip  are the fibre and matrix material properties at node i, respectively.  pf x  

is the polynomial of fibre material property variation. Its constants pfk , where  tk ,1 , and 

the order t of this polynomial depend on the fibres material property variation.  pm x  is the 

polynomial of matrix material property variation. The constants 
pmk , where k = 1,…, s, and 

the order s of this polynomial depend on the matrix material property variation. 
Then the effective material property of the composite one-layer beam is given by 

          L f f m mp x v x p x v x p x   (11) 

or by polynomial form: 
    

LL Li pp x p x  (12) 
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Here, Lip  is the effective longitudinal material property at node i, and the expression  

    L
pL

Li

p x
x

p
   (13) 

is the polynomial of effective longitudinal material property variation. The notations: Ep   
– for the elasticity modulus , G – for the shear modulus,   – for the thermal conductivity,   
– for the electrical conductivity, T  – for the thermal expansion coefficient and   – for the 
mass density, respectively. Using equation (11) we obtain effective Young’s modulus  xEL , 
effective Poisson’s ratio  xL , effective electrical conductivity  xL , effective thermal 
conductivity  xL , effective mass density  xL , and effective thermal expansion coefficient 

 xTL . The more correct expression for the effective thermal expansion coefficient is [4], 
[8]: 

              
       xExvxExv

xExxvxExxv
x

mmff

mTmmfTff
TL 





  (14) 

Expressions (6) to (8) can be used as for the effective material properties calculation of the 
single-layer FGM beams as for the kth layer of the multilayer beam. 

Let us replace the initial beam (Figure 1a) by a multilayer FGM beam (Figure 1b). 
Lamination is symmetric according to the geometry of the layers and material properties. This 
symmetry allows the usage of the elementary theory of homogeneous isotropic beams for all 
solutions, however, material properties have to be replaced by their effective values [1]. From 
the mechanical coupling point of view, axial loading is not coupled with transversal loading. 
Individual layers are built of FGM composite with longitudinal variation of the volume 
fractions and material properties of the constituents, as described above. 

Homogenization of material properties of the multilayer beam will be done using the 
theory of laminates [1], [9], [10]. By this way we get one layer beam with a longitudinal 
variation of homogenized longitudinal material properties. Main dimensions of the beam - 
such as the beam length L, height h and width b – remain conserved. 

For the effective common material property of the kth layer, according to (11), we can 
write: 
    xpxp k

Lp

k
Li

k
L   (15) 

Index k represents the layer number   nk ,1  in the upper and lower symmetrical part of the 
beam – see Figure 1. The number of layers of the symmetrical part is n. If the cross-sectional 
area of the kth layer is kA , then the cross-sectional area ratio of the kth layer is defined as 

 





n

i
i

kk
Ak

A

A

A

A
r

1

2
 (16) 

where 


n

i
iA

1

2 is the total cross-sectional area. Similarly to expression (16) we can write the 

moment area of inertia ratio of the kth layer as 
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



n

i
iz

zk

z

zk
I

I

I

I

I
r

zk

1

2
 (17) 

where zkI  is the moment area of inertia of the kth layer and 



n

i
ziz II

1

2  is the total area 

moment of inertia of cross-section. Because the Young’s modulus multiplied with the cross-
sectional area defines the axial stiffness and multiplied with the area moment of inertia 
defines the bending stiffness, we have to distinguish homogenized effective Young’s modulus 
for axial loading  xE NH

L  and homogenized effective longitudinal Young’s modulus for 

bending  xEMH
L . Then, the homogenized effective longitudinal common material properties 

 xpH
L  of the homogenized beam element can be expressed as 

    xprxp k
L

n

k
jk

H
L 




1

 (18) 

where Aj   for the following effective longitudinal material properties: Young’s modulus 

for axial loading  xE NH
L , shear modulus  xGH

L , thermal conductivity  xH
L , electrical 

conductivity  xH
L , mass density  xH

L  and zIj   for Young’s modulus for bending 

 xE MH
L . The homogenized effective longitudinal thermal expansion coefficient  xH

TL  of the 
homogenized element has to be calculated according expression [8]: 

  
   

       







 
n

k

k
L

k
TLAkNH

L
n

k

kk
L

n

k

kk
L

k
TL

H
TL xExr

xEAxE

AxEx
x

1

1

1 1 


  (19) 

For example, according the equation (18) the effective Young’s modulus of the kth layer is 

    xExE k
LE

k
Li

k
L   (20) 

If the cross-sectional area of the kth layer is kA , then the volume fraction of the pair of these 

symmetrical areas is AAkk /2 . 

Then, the effective longitudinal elasticity modulus for axial loading of the homogenized beam 
can be derived using the expression 

      xExExE NH
LE

NH
Li

n

k

k
L

kNH
L 




1

 (21) 

where   



n

k

kk
Li

NH
Li ExE

1

  is the effective longitudinal elasticity modulus for the axial loading 

of the homogenized beam at node i, and     /NH
L

NH NH
L LiE

x E x E   is the polynomial of its 

variation. This effective longitudinal elasticity modulus has to be used for the calculation of 
axial stiffness of the FGM beam. According to the notation in Figure 1 the effective 
longitudinal elasticity modulus for flexural loading of the homogenized beam of rectangular 
cross-section has been derived [4], [8]: 
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      
3

2
3

1

12
2

6
M
L

n
MH k MHk
L k k L Li E

k

h
E x d h E x E x

h




 
   

 
  (22) 

where MH
LiE  is the value of the effective longitudinal elasticity modulus in the flexural loading 

of the homogenized beam at node i, and   /MH
L

MH MH
L LiE

E x E   is the polynomial of its 

longitudinal variation. This effective longitudinal elasticity modulus has to be used for the 
calculation of the flexural stiffness of the FGM beam. 
In a similar way, the effective material properties can be derived for other types of cross-
sectional areas. All the homogenized effective longitudinal properties are denoted by 
superscript H  in this chapter. As assumed, their variation along the homogenized beam is 
polynomial except the thermal expansion coefficient. This one has to be transformed to a 
polynomial by Taylor series. The multilayer method can be very effective used as by 
homogenization of the multilayer beam as by the continuous transversal variation of material 
properties. Sufficient accuracy of the substitution of continuous transversal variations of 
material properties by a layer-wise constant lateral distribution of material properties will be 
reached when division to layers is fine enough. The constant value of the material property in 
the assumed layer at position x  will be calculated as a mean value from its values at the top 
and the bottom of this layer. The same method will be used also by the calculation of the 
components volume fractions in the competent layer. 

2.2 Homogenization for the 2D beam applications by the direct integration method 

By the direct integration method the transformation of FGM beam with continuously planar 
variation of material properties (Figure 1a) to the one layer beam with longitudinal variation 
of the effective material properties (Figure 1c) will be made in a single step [8], [9], [10]. 
From the assumption that the respective property (e.g. stiffness) of the real beam must be 
equal to the analogical property of the homogenized beam, the homogenized longitudinal 
elasticity modules for: tension – compression  xENH

L , bending  xEMH
L , shear  xGH

L , the 

homogenized mass density  xH
L , the electrical conductivity  xH

L , the thermal conductivity 

 xH
L , and the thermal expansion coeffiecient  xH

TL  can be calculated, respectively: 

  
 

A

dyyxEb

xE

h

hNH
L




2/

2/

,

,  
 

I

dyyyxEb

xE

h

hMH
L




2/

2/

2,

,   
 

A

dyyxGb

xG

h

hH
L




2/

2/

,

 (23) 

 

  
 

A

dyyxb

x

h

hH
L




2/

2/

,
 ,   

 

A

dyyxb

x

h

hH
L




2/

2/

,
 ,   

 

A

dyyxb

yx

h

hH
L




2/

2/

,

,


  (24) 

   

  
   

 AxE

dyyxEyxb

x
NH
L

h

h

T
H
TL




2/

2/

,,
  (25) 
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Similarly to (4), (5) and (6), the homogenized longitudinal shear modulus can be calculated 
by the simpler way: 

    


xE
xG

NH
LH

L   (26) 

There bhA   is the cross-sectional area and  12/3bhI   is the moment area of inertia.  

The homogenized material properties can be used for establishing of the finite element 
matrices of the FGM beam for single value - or muttiphysical analysis. 

2.3 Homogenization for the 2D beam applications for transversal non-symmetricaly 
varying material properties 

Consider a plane beam with a non-symmetric cross-section A , height h  and width ( )w z  with 
x  denoting the axial direction and z ( 2 2

h hz   ) referring to the transverse direction (see 
Figure 3).  

x y

zz

( )E z

z

mid plane A

2
h

2
h

dz

( )w z
z

2
h

2
h

( )xx z

z

neutral plane

 
Figure 3:Homogenization of non-symmetric FGM beams 

The Young’s modulus E  and the Poisson’s ratio  is arbitrarily distributed with respect to the 
geometrical mid surface 0z   and membrane and bending properties are coupled. In order to 
avoid the derivation of coupling matrices, a neutral plane z z  is evaluated where membrane 
and bending properties decouple. This is done by assuming a normal strain distribution xx  

caused by bending moments yM , i.e. 

 ( ) ( )xx z z z   , (27) 

with  denoting a curvature. The normal force xN  vanishes in absence of strain offsets of the 

neutral plane  

 
2 2

2 2

( ) ( ) ( ) ( )( ) ( ) 0

h h

h h

x xx xx

A

N dA E z z w z dz E z z z w z dz  
 

       , (28) 

leading to  

 
2

2

2

2

1
( ) ( )

( ) ( )

h

h

h

h

z E z zw z dz

E z w z dz 



 


 (29) 

and the coordinate transformation 'z z z  can be introduced. With respect to this new 
transverse direction 'z  ( 2 2'h hz z z     ) an arbitrary strain distribution reads 

 0( ) 'xx z z    , (30) 
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with 0  denoting an axial strain of the neutral plane. The normal forces and bending moments 

of the strain distribution (30) read 

 
2 2

2 2

2
0 0( ') ( ') ' ; ( ')(z') ( ') '

h h

h h

z z

x m y b

z z

N E z w z dz E A M E z w z dz E I   
 

   

     , (31) 

defining the homogenized axial stiffness mE A and the homogenized bending stiffness bE I . 

The shear correction factor s  is derived from a shear strain energy balance  

 
s

xz xz xz xz

A A

dA dA


     , (32) 

with xz  and xz  denoting the analytically correct transverse shear stresses and transverse 

shear strains, respectively, which are related by 

 
( ')

2(1 ( '))xz xz

E z

z
 





. (33) 

The constant mean values of transverse shear stresses and strains are indicated with an 
overbar in (32), while the following relations hold: 

 ; z
xz xz xz

s

Q
G

A
  


  . (34) 

In (34) G  refers to a constant shear modulus, i.e. 

 
2

2

(2 2 ( ')) ( ') '
h

h

b
z

z

E A
G

z w z dz


 




, (35) 

And zQ  denotes the shear force. Inserting (33)-(35) in (32) leads to  

 
2

2

2 2 2( ')2(1 ( ')) ( ')
'

( ')

h

h

z

xz xz z
s

sz

z z w z Q
dz A

E z G G A

   




 


  , (36) 

and defines the shear correction factor s . The analytically correct shear stress distribution is 

found from a force equilibrium at an infinitesimal beam portion dx (see Figure. 4),  

 
2 2

' '

( , ) ( ) ( , ) ( ) ( ') ( ') 0
h hz z

xx xx xz

z z

x w d x dx w d z w z dx        
 

      , (37) 

which is simplified using 

 

( , ) ( , ) ,

( ) E( ) E( ) E( ) .

xx
xx xx

y xx z
xx

b b

x dx x dx
x

M Q

E I x E I

   

       


  




   


 (38) 
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Figure 4: Force equilibrium to evaluate shear stress distribution xz  

Thus, the shear stress distribution reads 

 
2

'

( ') ( ) ( )
( ')

h z

z
xz

b z

Q
z E w d

w z E I
    



  , (39) 

and the shear correction factor s  is found from (36) with 

 
 

2 2

2

2

2
'

1 2(1 ( '))
( ) ( ) '

( ') ( ')

h h

h

z z

s z zb

GA z
E w d dz

w z E zE I

    


 

 

 
  

  
  . (40) 

3 HOMOGENIZATION OF THE FGM SHELLS 

The homogenization procedure for FGM shells with arbitrary distributed material 
properties can be found directly from the considerations of section (2.3) with   1zw . 
A detailed derivation can be found in [11] and [12]. 

4 NUMERICAL EXPERIMENTS 

The proposed homogenization methods were applied to homogenization for chosen 
material properties variations. The homogenized effective material properties were then used 
in multiphysical and modal analysis of the FGM beams and shells. Obtained results confirmed 
very good effectiveness and accuracy of our approaches. From point of view to meet the 
maximal number of the contribution pages, the results of provided numerical experiments will 
be presented by oral presentation of the contribution at the conference WCCM XI. 

5 CONCLUSION 

Homogenization of the material properties for FGM beams and shells, presented in the 
contribution, has been done by: (i) the multilayer method by use the extended mixture rules 
and laminate theory; (ii) by the direct integration method. The disadvantage of the direct 
integration method by homogenization of transversal continuously varying material properties 
is that the homogenized effective material properties are obtained via an integration of 
varying material properties along the height of cross-section, but the results are very accurate. 
As was shown in [8], [9], [10], any discontinuity in stress and displacements in structural 
analysis arises. When the variation of material properties is more complex the integration can 
bring some numerical difficulties. The disadvantage of the multilayer method is that the 
enough fine discretization in transversal direction on the layers is needed to obtain sufficient 
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solution accuracy. As was shown in [8], the discontinuity of the secondary variables of the 
structural analysis arises at the layer interfaces. The discontinuity of these variables (e.g. 
normal and tangential stress, thermal heat flux) can be smoothed out with finer discretization 
at layers or with a calculation of their average values. But the homogenization method is 
possible also for more complex systems without any solution problems, and also for the real 
multilayer beams and shells, where the discontinuity of the secondary variables regularly 
occurs at the layers interfaces. The homogenization of the varying material properties of the 
FGM beams in 3 directions (longitudinal, transversal and lateral) will be presented in our 
future contributions. 
 
Acknowledgement: This paper has been supported by Grant Agency APVV-0246-12, Grant 
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