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Abstract. In this contribution, a new 3D-beam finite element of double symmetric cross-
sectional area, made of a Functionally Graded Material (FGM) is presented, which can be 
used in modal, elastostatic and buckling analysis of single beams and beam structures. There, 
the material properties vary continuously in longitudinal direction while the variation with 
respect the transversal and lateral directions is assumed to be symmetric in a continuous or 
discontinuous manner (Figure 1). The shear force deformation effect and the effect of 
consistent mass distribution and mass moment of inertia are taken into account. Additionally, 
the Winkler elastic foundation and the effect of axial force are included by the finite element 
equation derivation as well. Homogenization of the spatially varying material properties to the 
effective material properties with longitudinal variation is done by multilayer method. For the 
homogenized beam the finite element matrix, consisting of the stiffness and mass inertia 
terms, is established. Numerical experiment is made to show the accuracy and effectiveness of 
the new 3D FGM beam element. 
 

1 INTRODUCTION 

Important classes of structural components, where functionally graded material (FGM) is 
used, are beams and beam structures. FGM beams play important role not only in structural 
applications, but we can find many applications of the beam structures in thermal, electric-
thermal or electric-thermal-structural systems (e.g. MEMS sensors and actuators, and other 
mechatronic devices). In all these applications, using new materials like FGM can greatly 
improve efficiency of a system. FGM is built as a mixture of two or more constituents which 
have almost the same geometry and dimensions. The plasma spraying, powder metallurgy and 
other technologies are used for fabrication of such materials. From macroscopic point of view, 
FGM is isotropic in each material point but the material properties can vary continuously or 
discontinuously in one, two or three directions. The variation of macroscopic material 
properties can be caused by varying the volume fraction of the constituents or with varying of 
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the constituents material properties (e.g. by non-homogeneous temperature field). Fabrication 
of such materials is complicated but a development in this area has progressed significantly in 
recent years. In the literature, many papers deal with static and dynamic analysis of the FGM 
single 2D beams with only transversal variation of the material properties. The longitudinal 
stiffness of the beam can be graded with varying cross - sectional area and with varying 
material properties. In [1], dynamic characteristics of a functionally graded beam with axial or 
transversal material gradation along the thickness on the power law have been studied. But we 
did not find in the literature papers which consequently deal with both the longitudinal and 
transversal variation of material properties whether in dynamics of the single beams neither in 
the beam structures built of such FGM beams. In [2, 3, 4], we dealt with the calculation of the 
free vibration of a single 2D FGM beam with continuous spatial polynomial variation of 
material properties by a fourth-order differential equation of the second order beam theory. 
The aim of this publication was also to present a new concept for expanding the second order 
bending beam theory considering the shear deformation according to Timoshenko beam 
theory. The shear deformation effect in FGM beam with spatial continuous variation of 
material properties is included here originally by means of the average shear correction factor 
that has been obtained by an integration of the shear correction function [5]. The continuous 
polynomial spatial variation of the effective elasticity modulus and mass density can be 
caused by continuous polynomial spatial variation of both the volume fraction and material 
properties of the FGM constituents. A choice of the polynomial gradation of material 
properties enables an easier integration of the derived differential equation and allows to 
model common variations of material properties. The effect of consistent mass distribution 
and mass inertia moment and the effect of large axial forces have been taken into account.  

The presented contribution is the continuation of our previous work pointed out to 
derivation of general homogenized 3D FGM beam finite element with the longitudinally 
polynomial varying effective material properties. Homogenization of the spatial continuously 
varying material properties in the real FGM beam and the calculation of its other parameters 
are done by the layering method [6]. If only transversal and lateral variations of material 
properties are considered in the real FGM beam, the longitudinally constant effective material 
properties arise from the homogenization. This method can be also used in the 
homogenization of multilayer beams with discontinuous variation (multilayer beam) of 
material properties in transversal and lateral direction. The effect of consistent mass 
distribution and mass inertia moment and the effects of large axial forces and the shear forces 
can be analyzed, as well. Numerical experiment is performed to calculate the 
eigenfrequencies of chosen 3D FGM beam of rectangular cross-section with symmetrically 
lateral and transversal variation of material properties. The solution results are discussed and 
compared with those obtained using a very fine mesh of the solid finite elements.  

2 THE FGM 3D BEAM FINITE ELEMENT EQUATIONS 

Let us consider a 3D straight beam finite element of doubly symmetric cross-section – 
Figure 1. The nodal degrees of freedom at node i are: the displacements ui, vi, wi in the local 
axis direction x, y, z, and the cross-sectional area rotations iziyix ,,, ,,  . The degrees of 

freedom at the node j are denoted by a similar manner. The internal forces at node i are: the 
axial force Ni, the transversal forces iyR ,  and izR , , the bending moments iyM ,  and izM , , and 
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the torsion moment ixM , . The internal forces at the node j are denoted by a similar manner. 

The first derivative after x of the relevant variable is denoted by upper symbol “´”. 
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Figure 1: The internal variables and loads 

Furthermore, xn is the axial force distribution, zq  and yq are the transversal and lateral forces 

distribution, yx mm , and zm are the distributed moments,   zyx A  is the mass 

distribution, yy I  and zz I   and pxT I   are the mass moments of inertia 

distribution (  xH
L   is the homogenized effective mass density distribution, 

12/3bhI y  and 12/3hbIz   are the quadratic moments of inertia, zyp III  the polar 

moment of inertia), zyzyx kkkkk ,,,,  are the elastic foundation modules (the torsional elastic 

foundation is not considered), and   is the natural eigenfrequency. The effective 
homogenized and longitudinally varying stiffness reads:  AxEEA NH

L  is the axial stiffness 

(  xE NH
L is the effective elasticity modulus for axial loading),   y

HM
Ly IxEEI y  is the flexural 

stiffness about axis y (  xE HM
L

y is the effective elasticity modulus for bending about axis y), 

  z
HM

Lz IxEEI z  is the flexural stiffness in axis z, (  xE HM
L

z is the effective elasticity modulus 



J. Murin, M. Aminbaghai, J. Hrabovsky, V. Kutis, J. Paulech, S. Kugler 

 4

for bending about axis z),   AkxGAG sm
y

H
Lyy   is the reduced shear stiffness in y – direction 

(  xGH
Ly  is the shear modulus and sm

yk is the average shear correction factor in y – direction), 

  AkxGAG sm
z

H
Lzz   is the reduced shear stiffness in z – direction (  xGH

Lz  is the shear modulus 

and sm
zk is the average shear correction factor in z – direction),   T

HM
L IxG x  is the torsional 

stiffness (  xG HM
L

x  is the torsional elasticity modulus ant TI  is the torsion constant). 
For establishing of the FGM 3D beam finite element equation we will use following 
differential equations for axial, transversal, lateral and torsional free vibration (according the 
Figure 1). 

2.1  Axial free vibration 

By combination of the main equations for the axial vibration (1) and (2) of the FGM beam  

  uknN xxx
2  (1) 

 
EA

N
u   (2) 

we get the differential equation with non-constant polynomial coefficients (3) 

 nuuu uuu  012   (3) 

where xuuu kAEEA  2
012 ,,  . In the modal axial vibration analysis the right 

side of the equations (3) is equal to zero.  
Here, xn  is the axial distributed load; N=N(x) is the axial force and N   is its first derivative; 

 xkk xx   is the modulus of elastic foundation in the axial direction;  xuu   is the axial 

displacement and  xuu   is its first derivative;  AxEEA NH
L  is the homogenized beam 

stiffness in axial direction, E  is the first derivative of  xE NH
L  and  is the natural frequency. 

The solution of (3) can be done by transfer functions jNb  for axial loading [7, 8]: 
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Here, iu is the axial displacement and iu is its value of the first derivative at node i. 

If the  xu  and iu  are replaced with the constitutive equation of the FGM beam 
EA

N
u  , we 

get: 
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where iE  is the initial value of the homogenized elasticity modulus  xE NH
L  at node i. By 

setting Lx   in (11) the dependence of the nodal variables at node j on the nodal variables at 
node i will be obtained. By appropriated mathematical operation the local finite element 
equation for axial free vibration were obtained: 
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The stiffness constants jiB ,  are calculated numerically by Mathematica [9]. 

2.2  Flexural free vibration 

Homogeneous differential equation of the 4th order with non-constant coefficients of the 
homogenized FGM beam flexural free vibration (about the y-axis) (Figure 1) has a form (7) 

 001234  wwwww wwwww   (7) 

Here  xww   is the deflection curve in the zx  plane. Its derivatives after x are denoted by 
the upper symbol. 
Derivation of the non-constant coefficients w0  to w4 and appropriated parameters of the 

differential equation (7) from the main coupled equations (8) and (9) of the 2nd order beam 
theory (including the inertia forces, shear force and axial force) using the relation between the 
transversal and shear force (10) is described in [3, 5]. 

wwkqR zzz
2                             yyyzy mQM  2   (8)             
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   zy
IIII

zz RNwNkQ      (10) 

Here, zq  is the distributed transversal load; ym  is the distributed bending moment; e
y  is he 

applied beam curvature; zk  is the modulus of elastic Winkler foundation;   is the mass 

distribution; y is the mass inertial moment distribution;   is the natural eigenfrequency; zR  

is the transversal force; zQ  is the shear force; yM  is the bending moment; y  is the angle of 

cross-section rotation; w is the beam deflection; EIy is the bending stiffness and zAG  is the 
reduced shear stiffness of the homogenized FGM beam. NN II  is the resultant axial force of 
the 2nd order beam theory, y  is the beam rotation imperfection, and yk is the elastic 

foundation modulus for flexural beam rotation. We assume that all the above quantities are 
the polynomial functions of x. The first derivative after x of the respective function is denoted 
by superscript symbol “´”. For the modal analysis, the external loads are equal to zero. 

If the variation of the beam parameters is polynomial, the solution of this differential 
equation based on transfer function [7] has a form: 
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where jwb , jwb , jwb   and jwb   functions, ( 3,0j ), are the solution functions (called transfer 

functions) of the differential equation (7). The dependence of the  xww  ,  xww   and 

 xww   on the    xMMx yyyy  ,  and  xRR zz   is described in [3] from which the 

transfer matrix expression has been obtained: 
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The jiA ,  functions are evaluated by software Mathematica [9], and they are of relative 

complicated form. The kinematical and kinetic variables at node i are denoted by index i in (). 
By setting Lx   in (12) the dependence of the nodal variables at node j on the nodal variables 
at node i will be obtained.  
By appropriated mathematical operation the local finite element equation for flexural free 
vibration (about the y – axis) were obtained: 
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The stiffness constants Bi,j are calculated numerically by Mathematica. 
Homogeneous differential equation of the 4th order with non-constant coefficients of the 
homogenized FGM beam flexural free vibration (about the z-axis), (Figure 1), can be derived 
similarly to the previous case, and it has a form (14) 

 001234  vvvvv vvvvv   (14) 

By appropriated mathematical operation the local finite element equation for flexural free 
vibration (about the z – axis) were obtained: 
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The stiffness constants jiB ,  are calculated numerically by Mathematica [9]. 
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2.3  Torsional free vibration 

The differential equations of uniform torsion free vibration of a beam are formulated 
according the Figure 1 and has a form: 

 xp
H
Lxx ImM  2  (16) 
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M
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There, pI is the cross-sectional area polar moment of inertia; IT is the torsion constant (Ip = IT 

for the circular cross-section);   is the natural frequency; x  is the torsion angle of rotation; 

x  is a first derivative of the torsion angle. The load – distributed torsion moment – is 

denoted by  xmm xx  . The derivative of appropriate variable is denoted by “´” 

By combination of equations (16) and (17) and after some mathematical manipulations the 
differential equation has been obtained: 

 xxTxTxT m  012   (18) 
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HM

LT IG x1 ; T
HM

LT IG x2 ; 2
0  p

H
LT I . According to [7], 

the solution of the differential equation (18) is: 
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There jTb  and jTb ,  1,0j , are the transfer functions (of x) and their first derivatives, 

respectively. Those are the solution functions of the differential equation (18). The transfer 
functions depend on the longitudinal variation of the torsional shear modulus, the natural 
frequency, the polar moment of inertia, the torsion constant and the consistent mass density 
distribution. The p  and p  represents the influence of distributed loading on torsion angle of 

rotation and the first derivative of torsion angle and will be calculated from the 
inhomogeneous solution of the differential equation. In modal analysis these terms are equal 
to zero. By setting (16) and (17) into the (19) and by some mathematical manipulations, the 
transfer matrix relations (20) for uniform torsion have been obtained: 
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By setting x = 0 resp. x = L in (20) a dependence of state variables at point j on the state 
variables at the initial point i for modal analysis has been obtained: 
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By simple mathematical manipulation we get the local finite element equation: 
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with the finite element matrix terms: 
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 ,  1,0j , are the transfer constants which can be 

calculated by simple numerical algorithm [7, 8]. HM
Lj

xG  is the value of the homogenized 

torsional shear modulus at point j.  

2.4  Local FGM beam finite element equation 

The local finite element equation is obtained by superposition of the axial, flexural and 
torsional free vibration equations of the FGM beam, and it reads: 
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(23) 

In (23) the jiB ,  are the terms of the local beam element matrix. In modal analysis of the single 

straight beam the global finite element matrix coincides with the local matrix. The global 
matrix of the beam structures can be established by a usual method. In modal analysis the 
eigenvalue problem is solved. By given geometrical, material and boundary conditions the 
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natural frequency   will be increased until the determinant of the global matrix is zero. The 
natural frequency is the natural eigenfrequency from which the eigenfrequency can be 
calculated. 

3 HOMOGENIZATION OF SPATIAL VARYING MATERIAL PROPERTIES FOR 
THE 3D BEAM APPLICATIONS BY THE MULTILAYERING METHOD 

Let us consider a two nodal 3D straight beam element with predominantly rectangular 
cross-sectional area A. The composite material of this beam arises from mixing two 
components (matrix and fibres) that are approximately of the same geometrical form and 
dimensions. The continuous polynomial spatial variation of the elasticity moduli and mass 
density (only transversal and lateral variations of material properties are considered) can be 
caused by continuous polynomial spatial variation of both the volume fraction (fibres - 

 zyv f ,  and matrix -  zyvm , ) and material properties of the FGM constituents (fibres -

 zyp f ,  and matrix  zypm , ).  

Homogenization of the material properties (the reference volume is the volume of the 
whole beam) will be done in two steps by the multilayer method. In the first step, the real 
beam (Figure 2a) will be transformed into a multilayer beam (Figure 2b). Material properties 
of the layers will be calculated via the extended mixture rules [5]. Each layer will have 
constant volume fractions and material properties. In the second step, the effective 
longitudinal material properties of the homogenized beam will be derived using the laminate 
theory. These homogenized material properties are constant through the beam height and 
width (Figure 1c).  

t

s
( 1)

(s 1)

tk=1

k=n

 
Figure 2: Homogenization of material properties. 
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The material properties in the real beam can be calculated using extended mixture rule.  
          zypzyvzypzyvzyp mmff ,,,,,   (24) 

In our case the elasticity modulus  yxE , , Poisson ratio  yx, , and mass density  yx,  
have been calculated by expression (24). The FGM shear modulus can be calculated by 
expression: 
 

    
  zy

zyE
zyG

,12

,
,


  (25) 

In the homogenization of the spatial varying material properties (24) - (25) the multilayering 
method will be used. The homogenized elasticity moduli for: tension-compression - NH

LE , 

bending about axis y - HM
L

yE , bending about axis z - HM
L

zE , shear in y direction - H
LyG , shear in 

z direction - H
LzG , the torsional elasticity modulus HM

L
xG  and the homogenized mass density 

H
L  can be calculated, respectively: 
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n

k
kk

H
L


 1


   (28) 

Here, Ak is the cross-section, Ek is the constant elasticity modulus, Iyk and Izk are the quadratic 
moments of inertia, Gk is the constant shear modulus, ITk is the torsion constant and k is the 

constant mass density of the kth layer. The exact expression for homogenization of spatial 
varying (continuously or discontinuously and symmetrically in transversal and lateral 
direction, and continuously in longitudinal direction) material properties for the FGM beams 
of selected doubly-symmetric cross-sections will be presented in [10] in detail. 

4 NUMERICAL EXPERIMENT 

The clamped FGM beam has been considered (as shown in Figure 3). Its rectangular cross-
section is constant with height h = 0.005 m and width b = 0.01 m. Length of the beam is 
L = 0.1 m. Material of the beam consists of two components: aluminum Al6061-TO – as a 
matrix and denoted with index m; titanium carbide TiC – as a fibre and denoted with index f. 

Material properties of the components are assumed to be constant and their values are: 
aluminum Al6061-TO (matrix) – the elasticity modulus 0.69mE  GPa, the mass density 

2700m  kgm-3, the Poisson’s ratio 33.0m ; titanium carbide TiC (fibres) – the elasticity 

modulus 0.480fE  GPa, the mass density 4920f  kgm-3, the Poisson’s ratio 20.0f .  
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Figure 3: FGM beam with spatial variation of material properties 

The fibre volume fraction varies linearly and symmetrically according to the y-z plane  
0.1;0fv - the core of the beam is made from pure matrix and linearly vary to the edges 

that are made from pure fibre. The average shear correction factor in y – direction 6/5sm
yk  

and in z – direction 6/5sm
zk  have been considered (constant Poisson ratio has been assumed 

for simplicity). 
Using multilayer method the effective elasticity modulus for axial loading NH

LE in [GPa], 

for bending about axis y - HM
L

yE and about axis z - HM
L

zE in [GPa], shear moduli H
LyG and H

LzG  in 

[GPa], torsional shear modulus HM
L

xG in [GPa] and mass density H
L  in [kgm-3] have been 

calculated: 

 11.342NH
LE GPa;  43.396 HM

L
HM

L
zy EE  GPa;  

 58.138 H
Lz

H
Ly GG  GPa;  23.162HM

L
xG  GPa 19.4175H

L  kgm-3 

The FGM beam clamped at the node i has been studied by modal analysis. The first eight 
eigenfrequencies f [Hz] have been found (see Table 1) using the new FGM beam finite 
element (calculation has been done with software Mathematica [9]). Only one our new finite 
element was used. The same problem has been solved using a very fine mesh – 8967 of 
SOLID186 elements of the FEM program ANSYS [11]. The average relative difference 
 [%] between eigenfrequencies calculated by our method and the ANSYS solution has been 
evaluated. 

Table 1: Eigenfrequencies of the FGM beam  

eigenfrequencies f [Hz] 
New Finite 

Element 
Ansys  [%] 

1st flexural about axis y 785.4 787.1 0.22 
2nd flexural about axis z 1560.8 1562.0 0.08 
3rd flexural about axis y 4859.9 4864.9 0.10 
4th flexural about axis z 9324.5 9297.3 0.29 
5th torsional 11553.0 11213.0 3.03 
6th flexural about axis y 13345.6 13340.0 0.04 
7th axial 22630.1 22671.0 0.18 
8th  flexural about axis z 24228.9 24259.0 0.12 
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5 CONCLUSION 

Originally, new 3D beam finite element for modal analysis of the FGM beam structures 
has been established in the proposed contribution. The obtained results have been studied and 
compared with results obtained using a very fine mesh of the FEM program ANSYS. As can 
be observed, an excellent agreement of both solution results has been obtained, which 
confirmed respectable accuracy and effectiveness of our approach.  
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