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Abstract. Inverse analysis has been established as an effective tool for parameter 
identification of physical models in many fields of civil engineering. One of the main issues 
in inverse analysis is defining the well-posedness of the problem when a limited set of data is 
considered. In fact as shown in previous work, the location and the number of the sensors 
providing the experimental data greatly affect the accuracy of the inverse procedure. In this 
paper it will be shown that, under certain circumstances, it is possible to approximate the 
global field as a linear combination of the experimental data. This provides a rational basis for 
the choice of the experimental equipment by minimising the effect of the measurement error 
on the solution of the inverse problem. A numerical application regarding the estimation of 
the main parameters of an advanced mesoscale model for masonry structures highlights the 
practicality of this study. 

 
 
1 INTRODUCTION 

Inverse analysis has been established as an effective tool for parameter identification of 
physical models in many fields of civil engineering [1], in industrial applications ([2], [3]) and 
for the solution of in-situ diagnostic problems ([4], [5], [6]). 

In recent years, several methods for solving structural inverse problems have been 
proposed [7] but, as very often only a limited set of measured data is available, the 
minimization of the discrepancy function represents the most popular technique used in 
practical applications. 

One of the main characteristics of inverse problems is that they can be severely ill-posed 
even when the corresponding forward problem is well-posed. According to Hadamard’s 
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definition [8], an inverse problem is well-posed when i) the solution exists, ii) it is unique, 
and iii) it is stable, i.e. the solution of the “perturbed” problem remains in the neighbourhood 
of the “exact” solution also when a small noise is applied to the known terms. Moreover even 
if the existence and the uniqueness conditions hold, it is important to study the stability of the 
solution by accounting for noise effects, since they cannot be neglected when solving real 
problems.  

An inverse problem may be ill-conditioned in a global sense or only for specific 
measurement data. In the first case, it is impossible to determine univocally the parameter 
vector by means of inverse techniques even when the full-field measurements are known. 
This means that the experimental setup has been poorly chosen, and the sensitivity of the 
response (in a global sense) to the variation of the input data is very low or null. However, 
even if the problem is globally well-posed, it may be possible that with the available 
experimental data, the sought parameters are strongly influenced by noise effects. Thus since 
type, number and location of the sensors used in the experimental tests are usually chosen in 
an empirical way, a rational methodology for the assessment of the experimental equipment is 
critical to exploit the full potential of the inverse procedure.  

In this work, it will be shown that the use of finite element (FE) models allows the 
approximation of the global field as a function of a limited number of variables. If these are 
the measurable data, it is possible optimize their selection so as to control the propagation of 
the error from the measurements to the global field. Furthermore it will be shown that the 
global field obtained this way from the experimental data is strictly linked to the solution of 
the corresponding inverse problem, thus controlling the error in the “generated” global field 
means controlling the error of the inverse procedure in terms of material parameters. The 
“model reduction” is achieved by means of Proper Orthogonal Decomposition [9], while the 
choice of the sensor location can be seen as an optimisation problem, where the aim is 
minimising the effect of the noised data on the global response description. Hereinafter a 
practical application of the proposed approach is discussed. This corresponds to a numerical 
application where the main material parameters for a detailed mesoscale model for 
unreinforced masonry [10] are obtained from a simple test set-up. The application of inverse 
analysis techniques to this material model was investigated by the authors in previous 
research [6], where the need for an optimal set of experimental data was pointed out.  

2 OVERVIEW OF THE ELASTIC INVERSE PROBLEM 

Let us consider a mechanical system, of volume � and boundary	��, defined by the 
position x in the reference configuration. It is known that the equations governing the quasi-
static behaviour of the system are of three different types: 

1. Equilibrium equations; 
2. Compatibility equations; 
3. Constitutive equations. 
In direct (forward) problems, the aim is obtaining the vector field u and, consequently, the 

tensor field, by solving the system of Partial Differential Equations (PDEs) given by the 
above mentioned equations and the boundary conditions. The closed-form solution of such 
PDE system is known in very special cases; generally it can be approximated using a Finite 
Element discretization. 
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In inverse problems together with the previously mentioned unknowns, the constitutive 
parameters p, representative of the used material model, are to be sought. Clearly, the problem 
becomes under-determined, so some new conditions have to be added. These new conditions 
may be obtained from experimental measurements taken during the tests. 

Let us suppose we have a mathematical model (or a FE model) ���, �	 which, once the 
geometry, the spatial distribution of the material properties and the boundary conditions are 
known, gives the displacements as function of the material parameters p: 
��	 � ���, �	 (1) 

In the hypothetical case in which the full displacement field 
���	 is known, a necessary 
condition for the solution of the inverse problem is the equality between the computed and the 
reference fields, ���, �	 � 
���		�	�	 (2) 

In globally well-posed inverse problems, this condition is also sufficient, and the most 
widely used method to solve inverse problems is the minimization of a “cost” function which 
measures the discrepancy between the measured data and the computed counterparts. With 
this approach, the optimization problem to be solved is: 

� � arg	min� �� ‖
���	 � ���, �	‖���� �	 (3) 

where ‖∙‖ is a suitable norm measuring the discrepancy between the computed and the 
reference displacement.  

Since Eqn. (2) is an overdetermined system, the solution is exact only in absence of noise 
in 
���	; otherwise it is a solution in a least-square sense and its quality depends on both the 
noise and the conditioning of the system. 

The hypothesis of a whole displacement field being known is usually satisfied only for 
small specimens, restricting loading conditions (such as plane strain) and particular 
measurement equipment (i.e. Digital Imaging Correlation [11]). Conversely in most common 
cases, only a discrete number of displacement measurements is available which can be 
obtained using extensometers or trasducers  (generically referred to as sensors). Thus it is 
critical to establish the amount of information carried by the experimental data, and how to 
select the optimal position for the sensors.  

3 THE CASE OF A DISCRETE NUMBER OF EXPERIMENTAL DAT A 

When the full displacement field 
���	 is not known, and only a limited set of L data 
�� is 
available, it is common practice to replace the problem (3) with the following: 

� � arg	min� � ‖
�� � ���, ��	‖�
!
�"# $	 (4) 

or, sometimes, with others having more complicated forms involving weight matrices and/or 
regularization terms. In Eqn. (4), xi is the position of the i-th sensor.  

While the solution of Eqn. (3) is the set p1 which fits best the global experimental response, 
nothing is known about its relationship between the solution p2 of (4), which only fits best the 
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data provided. It is intuitive that lim&→() �� � �#, but, for finite values of L, the discrepancy 
in the solution �� � �#is not only function of L, but also of the position ��, and there is no 
guarantee that increasing the amount of data could improve the accuracy of the estimation (as 
proved in [12] with reference to an inverse problem of gravity). In the next subsection, the 
relationship between the displacement field and a discrete number of data is investigated. 

3.1 From a displacement field to discrete values 

Using the Finite Element Method the domain can be discretised into finite number of 
elements and the dependency of u on the position x in the global reference system can be 
made explicit by means of the relationship: 
 � ���, �	 � *
��+		,+	-��	 (5) 

in which the subscript e indicates the element which the point P with global and local 
coordinates x and xe, belongs to. The matrix *��+	 collects the shape functions, which 
depend on the type of finite element considered. The transformation matrix Ae transforms the 
global nodal displacement vector U into the local reference system. Since the shape functions 
and the transformation matrix are known a priori, the dependence of the full displacement 
field on the material parameters is completely characterized by the knowledge of the 
relationship - � -��	. From a theoretical point of view, imposing the equality between the 
displacement field (functional equality (2)) is equivalent to imposing the vectorial equality: -��	 � -. (6) 

where -. is the N-sized vector collecting the displacements of the nodes in which the structure 
is discretised. If we neglect the possible error given by the used shape functions, the inverse 
problem is solved when a limited number of displacements i.e. the nodal displacements are 
known, and the infinite-sized system (2) is replaced by the N-sized system (6).  

In most cases, the choice of the nodal discretisation for the analysed domain is clearly 
distinct from the choice of the nodes the displacements of which are recorded during the test 
and usually N is much larger than L. What we want to prove, though, is that, once L 
displacements 
�� are available, it is possible to express the vector -. as linear combination of 
them. 

Let us suppose that it is possible to exploit the dependence of U on p by simply choosing a 
convenient basis. In this work, the choice of the new basis has been done by analysing the 
behaviour of the structure using Proper Orthogonal Decomposition (POD, [9]) and varying p 
randomly. Thus the displacement field expressed in the new basis reads: 

-��	 � /0��		1�2
�"# � 3	4��	 (7) 

where 3 is an 5 6 7 matrix representing the new basis and a(p) is a vector collecting K 
amplitudes. This way, the dependence on p is restricted to the amplitudes, while the basis is 
fixed once-for-all. If K=N, U is simply expressed in a different equivalent basis. On the other 
hand if the variation of the material parameters p acts on U simply modifying the relative 
importance of a limited number K<<N of “shapes” 1�, the advantages in expressing U as in 
(7) become apparent. 
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In fact let us consider a displacement 
�. From (7), it can be written as: 
� � 3�	4��	 (8) 

where 3� is the 3 6 7 matrix obtained choosing the rows of 3 corresponding to the 
displacements ui. Consequently, the vector 
 collecting the L displacements 
� can be 
expressed as: 
 � 39	4��	 (9) 

with: 

39 � :3#	…3!	< (10) 

On the other hand, a relative displacement Δ>? between two points (respectively placed at 
xk,1 and xk,2) along the direction of the line connecting them (i.e. as in the case of relative 
displacements measured by transducers in physical tests) can be expressed as:  Δ>? � @
A,� � 
A,#BCDA � DAE@3A,� �3A,#B	4 (11) 

where DA is the vector of the director cosines of the direction considered. The matrix 39 now 
becomes: 

39 � FD#E�3#,� �3#,#		…D!E�3!,� �3!,#		G (12) 

If rank(39)=K, it is possible to invert eqn. (9) obtaining: 4 � 39H	
 (13) 

where 39H is the left pseudo-inverse matrix of 39 (39H=39I# if 39 is squared). From (7) 
and (13): - � 3	39H	
 � J	
 (14) 

3.2 The choice of the sensors 

Expression (14) is a linear relationship between the nodal displacement vector and a 
limited set of data (both absolute displacements, eqn. (10), or relative displacements, eqn. 
(12)). Thus it is natural to investigate how an error in u propagates into the global response. 
Applying a perturbation to u in Eqn. (14) and subtracting the unperturbed expression it can be 
obtained: K- � J	K
 (15) 

Reminding one of the basic equations for the norm of a matrix: ‖K-‖ L ‖J‖	‖K
‖ (16) 

it is clear that given an error in the measured data u (usually not controllable), an upper 
bound for the error in the vector U (and, consequently, in the global field) is given by the 
norm of the matrix P. Since P changes with changing sensor locations M (through the terms of 
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39H), a rational approach in the choice of the measurement data may be the minimization of 
the corresponding norm ‖J‖: 

MN � :�N#…�N!< � arg	minM �‖J�M	‖		 (17) 

where xsi indicates the position of the i-th sensor. Although difficult to express in an analytical 
form, the optimization problem (17) can be easily treated by using meta-heuristic techniques 
such as Genetic Algorithms [13]. 

It is important to point out that there is an implicit relationship between the global field 
evaluated in (14) and the solution of (4). In fact, neglecting the error made in the compact 
representation (7), the displacements U are obtained by solving the overdetermined system (9) 
using a least-square approach. This represents the global displacement field whose nodal 
displacement u fits best the experimental data among all possible representations given by the 
FE model. On the other hand, that is the same definition for the solution of (4), which 
corresponds to the vector p giving the best fitting nodal displacements ���, ��	 in a least-
square sense. It results that the solution of the inverse problem will be as accurate as - � J	
 
and the propagation of the error in the inverse procedure can be easily controlled by a careful 
choice of the sensor location.  

4 A NUMERICAL APPLICATION 

In this numerical application the main elastic material parameters of an advanced 
mesoscale model [10] for masonry structures are obtained utilising inverse analysis 
techniques. After a brief description of both the material model and the FE description for a 
specific experimental setup, the influence of random errors in the displacement field on the 
solution of the inverse problem is analysed. With this aim a “pseudo-experimental” approach 
is used and a vector p is fixed a priori, while the displacements are evaluated performing  FE 
analysis eventually perturbed by a random noise. The comparison between the solution of the 
“perturbed” inverse problem and the known solution allows an accurate investigation of the 
noise effects. 

4.1 The material model 

In the mesoscale model employed here to represent brick/block-masonry [10], blocks are 
modelled using continuous 20-noded elastic solid elements whereas mortar and the brick–
mortar interfaces are modelled by means of 16-noded 2D nonlinear interface elements. The 
interface local material model is formulated in terms of one normal and two tangential 
tractions σ and relative displacements u evaluated for each integration point over the 
reference mid-plane. In the elastic range, they are linked by the expression: 

O � AP
																				 QRSRTU V � :
WX 0 00 WX 00 0 WZ< [

>S>T>\ ]	 (18) 
 

in which specific elastic stiffness values are considered assuming decoupling of the normal kN 
and tangential kV stiffness. In the following the unknowns are represented by the vector 
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� � ^WXWZ_, while brick Young modulus is assumed to be known. Zero-thickness interfaces are 

also arranged in the vertical mid-plane of all blocks, but in this work their stiffness is set very 
high to model the continuity of the material. This material model was previously developed 
and implemented into ADAPTIC, a general finite element code [14]. 

4.2 The experimental test 

The experimental test analysed in this work is a compressive diagonal test on an 
approximately squared masonry panel. It is widely used in practise ([15], [16]) to estimate 
strength of masonry as a homogeneous material. In this paper it will be shown that this test 
can provide also useful information to obtain the elastic properties of interface elements 
representing mortar joints when using the previously described mesoscale model.  

The experimental setup is shown in Figure 1-a. A 1170×1200×120 mm3 large masonry 
panel, made up of 250×60×120 mm3 large bricks and 10 mm thick mortar joints is subjected 
to an imposed diagonal displacement ud = 1 mm. The structure is assumed to behave 
elastically. The pseudo-experimental model is created imposing kV = 50 N/mm3, kN = 120 
N/mm3, Eb = 2500 N/mm2, ν = 0.15, where kV and kN are the mortar interface stiffness values 
described in section 4.1, and Eb and ν are the brick Young modulus and Poisson ratio, 
respectively. The displacement field of the pseudo-experimental model is shown in Figure 1-
b. 

 
 
 

(a) 

 

 
(b) 

Figure 1: (a) Experimental setup and (b) pseudo-experimental displacement field. 

4.3 The POD analysis 

To create the POD basis, 200 FE model samples with variable material parameters p have 
been considered. The samples have been generated by varying p in a reasonable range (Table 
1) by using a pseudo-random technique (i.e. Sobol sequence [17]).  
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Table 1: Variation range of the interface elastic stiffnesses 

Parameter Lower bound 
(N/mm3) 

Upper bound 
(N/mm3) 

Step  
(N/mm3) 

kV 10 300 1 
kN 30 500 1 

 
In the POD theory, it is possible to prove that the error in the POD approximation is 

controlled by the ratio: 

` � ∑ b0c0"d∑ b0e0"d 	 (19) 
 

with:  
• K number of chosen modes; 
• M number of samples 
• λi i-th eigenvalue of the modified correlation matrix D= UTU. U is the so-called 

snapshot matrix, i.e. the matrix collecting the displacements of the samples as 
columns. 

The analysis shows that 3 modes are sufficient to approximate the response, as they 
provide ̀ ≅ 100%. A graphical representation of the three modes is shown in Figure 2.  

   
Figure 2: Basic modes after the POD analysis. 

4.4 Error propagation analysis 

In the analysis different measurement setups are considered: i) setup 1 - the whole nodal 
displacement vector U; ii) setup 2 -nine sensors measuring relative displacements in the 
vertical direction Figure 13-a; iii) setup 3 - nine sensors placed as the outcomes of the 
optimization problem given by eqn. (17) and solved by a Genetic Algorithm Figure 13-b. 
This is not described here for the sake of briefness. 
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(a)                                          (b) 

 
Figure 3: (a) Sensor setup 2 and (b) setup 3. 

A uniform random noise of amplitude i0.01	kk has been applied to the pseudo-
experimental displacement field. By means of Eqn. (14) it is possible to evaluate the “best 
fitting” displacement field, given the set of data provided by the three measurement setups, 
and compare it with the “real” field shown in Figure 1-b. The results are reported in Figure 4. 

Some considerations may be done. The knowledge of the overall perturbed displacement 
field allows for the determination of an error-averaged field which is affected by a remarkable 
less inaccuracy. Expression (14) represents a sort of “regularization” of the field, averaging 
the error. In the “regularized” version of the field (Figure 4-b), the maximum error (0.00257 
mm) is about six times smaller than the maximum in the original perturbed field (0.0167 mm, 
see Figure 4-a). As far as sensor setup 2 is concerned, it is greatly affected by the error in the 
measurements (maximum error in the generated field equal to 0.255 mm). On the contrary, a 
rational arrangement of the nine sensors (setup 3) allows for a minimal propagation of the 
error onto the generated field (maximum error 0.00677 mm). 

The Frobenius norm of the matrix P (Eqn. (16)), which is an upper bound to the 
perturbation of the generated field, as shown in section 3.2, reflects these considerations. In 
fact for the proposed setups we have: 

• ‖l‖m,d � √7 � 1.732 
• ‖l‖m,q � 1239.2 
• ‖l‖m,s � 37.36 
 
 
 
 
 
 



C. Chisari, L.Macorini, C. Amadio and B.A. Izzuddin. 

10 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4: (a) Random noise, (b) “best fitting” displacement field for sensor setup 1, (c) setup 2 and (d) setup 3. 

4.5 The inverse analysis 

Inverse analysis has been carried out assessing the ability of the sensor setups described in 
the previous section to solve the calibration problem for the elastic interface stiffness values. 
30 perturbations of the pseudo-experimental displacement field (in the range i0.01	kk) 
have been considered, and each of them has been assumed as known term in the discrepancy 
function (4) for the sensor setup 1. Furthermore for each perturbation, the nine relative 
displacements corresponding to the nine sensors of setups 2 and 3 have been evaluated. They 
thus represent the variables >u0 in (4), and L = 9 in these cases. The minimization of the 
discrepancy function has been carried out by means of the Genetic Algorithm described in [6]. 
The results are shown in Figure 5. 
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(a) 

 
(b) 

 
(c) 

Figure 5: Results of the inverse analyses with sensor setup 1 (a),  2 (b) and 3 (c). 

The global well-posedness of the problem is confirmed by the excellent results obtained 
using the whole displacement field (sensor setup 1, Figure 5-a), where it is clear that the 
knowledge of the field allows an accurate estimation of the material parameters even in 
presence of a random noise. On the other hand, the inverse analysis reflects the inadequacy of 
the sensor setup 2 when compared against sensor setup 3. The error in the parameter 
estimation is practically unbound in the first case, while very limited in the other one. It 
confirms what has been said about the representativeness of the measured data with respect to 
the global field, and, as consequence, the well-posedness of the inverse problem when a 
limited set of experimental data is available. 

5 CONCLUSIONS 

In this work a numerical study has been carried out to investigate the well-posedness of 
elastic inverse problems when different sets of experimental data are considered. It has been 
shown that it is possible to approximate the global displacement field as a linear combination 
of the experimental data. Furthermore, the displacement field obtained this way from noise-
affected data is strictly related to the solution of the inverse problem when the same data are 
used in the minimisation of a discrepancy function. Thus it has been found that a rational 
basis for the optimal experimental equipment (number and location of the sensors) for the 
inverse problem can be based on the control of the propagation of the error from the measured 
data to the global field. The application of the proposed procedure to a simple laboratory test 
on a masonry specimen modelled by means of a mesoscale description confirms that a proper 
choice of the experimental equipment is crucial to maintain the well-posedness of the global 
problem. 
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