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Abstract. A finite element phase-field model for the analysis of brittle fracture problems
is formulated and numerically implemented. The model relies on recently developed
strategies for incorporating an additional phase-field to embody fracture. The spatial
discretization is formulated by means of the classical Galerkin method, whereas an implicit
Euler method with adaptive time-stepping is adopted for the temporal discretization. To
demonstrate the capabilities of the model, a two-dimensional square plate under tensile
loading is modelled. The obtained results show that, as expected, the stress singularities
at the corners of the plate are responsible for the crack initiation and propagation.

1 INTRODUCTION

The prevention of fracture-induced failure is a major constraint in engineering design
processes, and the numerical simulation of fracture processes often plays a key role in
design decisions.

Although a huge effort has been made to develop novel and accurate models of fracture
and an enormous progress has been achieved, the development of an adequate scheme for
the numerical simulation of crack initiation and propagation is still a significant challenge
for the Computational Mechanics community. A particularly successful approach is pro-
vided by the Linear Elastic Fracture Mechanics (LEFM) theory, based on Griffith’s theory
for brittle fracture, which relates crack nucleation and propagation to a critical value of
the energy release rate. However, this theory suffers from several deficiencies, namely:
(i) inability to predict crack initiation (local stress needs to be infinite); (ii) inadequacy
to predict the direction of a crack path; (iii) inability to handle crack jumps; and (iv)
inability to predict crack branching.

From a numerical point of view, the efforts to model brittle fracture have been focused
essentially on two broad approaches: (i) discrete methods, such as the element deletion
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method, the embedded finite element method or the extended finite element method,
which use the FEM in conjunction with Griffith’s-type LEFM models to incorporate dis-
continuities into the displacement field, and (ii) continuum-damage (CD) methods, which
incorporate a damage parameter into the model that describes the material’s deteriora-
tion and controls its strength. Some of these methods are already available in commercial
CAE software packages and can be used for various applications. However, it has long
been recognized that, while the discrete methods are well suited only for static fracture
and when a moderate number of cracks occurs, the CD methods are not effective when
modelling large dominant cracks, since the damage zone tends to widen in a direction
normal to the crack initiation as the simulation proceeds. Another shortcoming of the
CD methods is that regularization algorithms are needed to overcome mesh dependency.

Additionally, current methods for predicting crack propagation, in particular for dy-
namics and 3D problems, still lack accuracy and robustness, even when applied to rela-
tively simple benchmark tests [1].

Due to these reasons, several efforts were made in the last decade to develop alter-
native schemes. Recently, a new approach for the numerical simulation of fracture has
emerged. In this approach, discontinuities are not introduced into the solid to represent
cracks. Instead, a fracture locus is approximated by a phase-field, which smoothes the
boundary of a crack over a small region [4, 2, 3]. The major advantage of using the
phase-field approach is that the evolution of fracture surfaces follows from the solution
of a coupled system of partial differential equations. As opposed to many discrete meth-
ods, its implementation does not require fracture surfaces to be tracked algorithmically.
Phase-field models avoid these difficulties by introducing a continuous phase-field variable
which smoothly interpolates between undamaged and fully failed states of the modelled
material.

The goal of this paper is to present a finite element phase-field model for brittle fracture
that is capable of reproducing various complex phenomena, such as branching of pre-
existing cracks, as well as the nucleation of new cracks in originally undamaged domains.

2 PHASE-FIELD MODEL OF BRITTLE FRACTURE

Consider an arbitrary body Ω ∈ R2 with external boundary ∂Ω and internal discon-
tinuity boundary Γ. Let ∂Ω = ∂ΩN ∪ ∂ΩD , with ∂ΩN and ∂ΩD being the Neumann
and Dirichlet boundaries, respectively, such that ∂ΩN ∩ ∂ΩD = ∅. The displacement of
a point x ∈ Ω at time t is denoted by u(x, t), and ε(x, t) is its associated infinitesimal
strain vector. u may be a result of either the applied body forces b, tractions t̄, prescribed
boundary displacements ū, or a combination of these actions. The body is assumed linear
elastic, homogeneous, and isotropic with Young’s modulus E and Poisson’s ratio ν.

The Lagrange energy functional of the problem is taken as

L(u, u̇, c) =

∫

Ω

(

1

2
ρu̇ · u̇−

1

2
(c2 + η)εTCε

)

dΩ−

∫

Ω

Gc

(

(1− c)2

4ε
+ ε∇c

)

dΩ (1)
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where u̇ stands for the derivative of u with respect to time, c is the phase-field, Gc is the
energy release rate, ε is the regularization parameter, η is the viscosity parameter and
C stands for the standard constitutive operator that maps infinitesimal strains, ε, onto
Cauchy stresses, σ, in the two-dimensional space.

c takes values from 0 to 1. c = 0 inside the crack and c = 1 away from the crack. ε

controls the width of the smooth approximation of the crack and η is a small dimensionless
parameter (0 < η � 1) introduced to avoid numerical difficulties where the material is
totally damaged (i.e., where c = 0).

The Euler-Lagrange equations of the problem can be used to arrive at the following
strong form of the equations of motion

D
T
σ + b = ρü (2a)

ċ = −M

(

cεTCε− Gc

(

2ε∆c+
1− c

2ε

))

(2b)

with
σ = (c2 + η)Cε

M is a mobility parameter and is assumed in this work to be constant and positive. As a
result, the adopted phase-field evolution model represents the classical Ginzburg-Landau
model [4].

Additionally, the following sets of boundary conditions

u = ū, on ∂ΩD

Nσ = t̄, on ∂ΩN

with

N =

[

n1 0 n2

0 n2 n1

]

where nj are the components of the external unit normal n of ∂ΩN , and initial conditions

u(x, 0) = u0(x), x ∈ Ω

u̇(x, 0) = v0(x), x ∈ Ω

must hold. ū and t̄ are the prescribed displacements on ∂ΩD and applied tractions on
∂ΩN , respectively. u0 and v0 are the displacements and velocities, respectively, for t = 0.

Perhaps the most significant drawback of variationally-based phase-field models is that
they typically allow for crack healing. To rule out such an unphysical behavior, Hakim
and Karma propose constraining the time-rate of the phase field to be less than or equal to
zero at all points and times [4]. Alternatively, following the approach proposed in [5], the
irreversibility of cracking can be guaranteed by imposing homogeneous Dirichlet boundary
conditions on the phase-field once a crack is detected. The latter is the formulation
adopted in this work.
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Figure 1: Square plate under quasi-static tensile load: problem definition

3 FINITE ELEMENT MODEL

The implementation of the initial boundary-value problem into a finite element scheme
requires both a spatial and temporal discretization. In this work, the spatial discretization
is formulated by means of the classical Galerkin method, whereas an implicit Euler method
with adaptive time-stepping is adopted for the temporal discretization of the transient
evolution equation. In particular, for the discretization in space, four-node quadrilateral
(bilinear Lagrangian) elements with three degrees-of-freedom per node, i.e., two displace-
ment and one phase-field degrees-of-freedom per node, and a 2×2 Gauss quadrature rule
are adopted in this work. The nonlinear coupled system of equations is solved using a
Newton-Raphson algorithm.

4 NUMERICAL RESULTS

4.1 Square plate under quasi-static prescribed displacement

The square plate under quasi-static prescribed displacement depicted in Figure 1 was
considered. A uniform 64× 64 mesh was adopted. The material parameters (assumed to
be dimensionally consistent) were set to E = 106, ν = 0.3 and Gc = 0.01, and plane stress
was assumed. The regularization, viscosity and mobility parameters were chosen to be
ε = 0.02, η = 10−5 and M = 109, respectively. The prescribed displacement was set to
ū = 4.5 × 10−4. The problem was solved in an incremental-iterative fashion by resorting
to the Newton-Raphson method. An adaptive time-stepping scheme was used, for which
the convergence tolerance was set to 1.0×10−9 and the optimal number of iterations to 4.
For a larger number of iterations, the adaptive scheme automatically decreases the time
step size, whereas for a smaller number of iterations the adaptive scheme increases it.

The obtained distributions of stresses and phase-field are shown in Figure 2. The
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Figure 2: Square plate under quasi-static prescribed displacement: stresses and phase-field obtained on
a 64× 64 mesh for ū = 4.5× 10−4

cracks initiate from the corners of the built-in edge at a displacement of ū = 2.9× 10−4.
At a displacement of ū = 4.1× 10−4 the cracks start deviating from the vertical edge. As
expected, high stress gradients can be observed at the crack tips.

The undeformed and deformed configurations of the plate are plotted in Figure 3.

5 CONCLUSIONS

- Discrete methods are well suited only for static fracture and a moderate number of
cracks.

- Continuum damage methods are not effective when modelling large dominant cracks.

- The variational approach circumvents the implementation of complex crack-tracking
algorithms and the need to describe the topology of the crack surface (the crack path
is the natural outcome of the analysis).

- The numerical implementation of the variational approach requires a high resolution
of the crack, which may lead to computationally expensive simulations.
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Figure 3: Square plate under quasi-static prescribed displacement: deformed (scaled) and undeformed
configurations of the plate obtained for ū = 4.5× 10−4
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