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Abstract. In refrigeration compressors, the suction and discharge valves are responsible for 

the retention of the refrigerant from the suction chamber to the cylinder and passage from the 

cylinder to the discharge chamber. As the opening and closing of the valves are caused by the 

forces produced by the refrigerant flow, the understanding of the flow through the valve is of 

fundamental importance in order to enhance the efficiency of the valve system. The numerical 

simulation of the flow is an efficient method to perform this task. Due to the complex 

geometry usually found in this type of valve, simplified geometries have been used to 

represent the valve, particularly the radial diffuser. This work presents a numerical simulation 

of the unsteady flow through a more realistic geometric model for the suction valve including 

the movement of the reed. An Immersed Boundary Method (IBM) with the Multi-Direct 

Forcing Scheme is used to represent the valve geometry and to solve the 3D unsteady flow for 

an imposed angular movement to the reed. An adaptive mesh dynamically refined is used for 

representing the flow domain. The governing equations are solved by a projection method, 

using a semi-implicit second-order scheme for time integration. The systems of algebraic 

equations are solved by a Multigrid-Multilevel technique. Results for pressure and velocity 

fields and for pressure profiles on the reed surface were obtained for Reynolds number 

varying from 1,000 to 8,000. The results show that the IBM is a very good alternative for 

solving the flow through reed type valves with complex geometry. 
 

 

1 INTRODUCTION 

The valve is one of the main components of hermetic compressors because it controls the 

mass flow rate through the compressor. The opening and closing movements of the valve are 

governed by the pressure difference applied by the refrigerant flow over the reed, as shown in 
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Figure 1. Therefore, it is essential to fully understand the flow through the valve in order to 

improve its design and to enhance the overall efficiency of the compressor. 

Several studies have been carried out to characterize the main features of the flow through 

the valve, specially using the radial diffuser as a valve model. Numerical solutions for 

incompressible laminar and turbulent flows have been performed [1-8] as well as many 

experimental works [9-14]. 

 

Figure 1:. Scheme of the valve reed. 

One of the main challenges for modeling this problem is the complexity of the valve 

geometry. Because of this reason, simpler geometries have been adopted, specially the radial 

diffuser. The treatment of the valve reed movement is another challenge for the current 

computational fluid dynamics methods. The use of body-fitted meshes, where the 

computational mesh is set to fit to the body, introduces several computational penalties once 

that, for each displacement of the valve reed, the mesh must be updated for the discretization 

of the new computational domain. This procedure requires extensive computational resources. 

An alternative method to accomplish the same task is the Immersed Boundary Method 

(IBM). The Immersed Boundary Method (IBM) introduced by Peskin [15] has been used 

successfully for solving flow problems in complex geometries presenting moving boundaries, 

especially for problems involving fluid-structure interaction. Therefore, this method is a 

natural procedure for solving the fluid-structure interaction occurring in valve systems. This 

method uses a Cartesian fixed grid (Eulerian grid) for solving the flow equations and models 

any immersed boundary using a moving Lagrangian grid. The immersed boundary is 

recognized through the addition of a force field (Lagrangian force field) in the momentum 

equations. 

Lacerda [16] and Rodrigues [17] have used the IBM to simulate the two-dimensional 

incompressible flow through a radial diffuser representing the valve system. Lacerda [16] 

used the Virtual Physical Model (VPM) introduced by Lima e Silva [18] to calculate the 

Lagrangian force only to represent the valve seat. The results obtained by Lacerda agreed very 

well with experimental data. Rodrigues [17] used the same model used by Lacerda [16] to 

calculate the force field, but applied it to analyze the flow through a radial diffuser with 

moving frontal disc. Rodrigues concluded that the method was able to represent well the 

movement of the frontal disc.  

In this work, the flow through a suction valve model is numerically simulated considering 

a real geometry to the valve. In order to accomplish this task a three-dimensional model was 

used to solve the incompressible flow through the suction valve, including the reed 

movement. 
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2 NUMERICAL METHOD 

A three-dimensional, unsteady, incompressible, and isothermal flow of a Newtonian fluid 

is considered to solve the flow through the suction valve model. The governing equations (in 

Cartesian coordinates) are the mass conservation and the momentum equations, given by: 

 0 u  (1) 
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where u represents the vector velocity field, p is the pressure, and ρ and μ are the density and 

the viscosity, respectively. The term   corresponds to the Eulerian force density field, which 

is responsible for representing the immersed boundary inside the flow. The Eulerian force is 

calculated through the distribution of the Lagrangian interfacial force,  , by using the 

following equation: 

 

   


 VD XxXFxf )(  (3) 

where x is the position of the Eulerian point, X  the position of the Lagrangian point, V  the 

discrete volume for each Lagrangian point, Γ the Lagrangian domain, and D(x-X) is the 

distribution function having Gaussian function properties. 

Several models to calculate the Lagrangian force,  , have been developed [19]. In this 

work, the Multi-Direct Forcing proposed by Wang [20] is used to calculate the interfacial 

Lagrangian force. This method iterates a direct forcing process at the Eulerian points close to 

the immersed boundary to guarantee the desired velocity at the boundary. The procedure 

involves the following steps: 

 

 Calculation of the velocity at the Lagrangian points using the distribution function: 
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 Calculation of the Lagrangian force density, F : 
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 Distribution of the Lagrangian force density to the Eulerian points through the distribution 

function: 
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 Update of the velocity field after forcing: 
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In the second step, U
t+Δt

 refers to the desired velocity at the immersed boundary. These 

four steps are repeated until U=U
t+Δt

. The force acting on the immersed boundary can be 

calculated by: 
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i tt
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where NF is the number of Multi-Direct Forcing cycles. 

The mesh used consists in sequences of nested, progressive finer rectangular grid patches, 

as exemplified by Figure 2. The refinement strategy is based on the position of Lagrangian 

points and on the vorticity field [21]. The finest level of refinement is set for regions close to 

the Lagrangian points, while in other regions the refinement level is set considering the 

maximum vorticity value. The mesh dynamically adapts itself to the flow while the immersed 

boundary is represented by the finest level. Figure 2 shows an immersed boundary 

represented by the Lagrangian domain covered by the finest level of the Eulerian domain as 

an example. 

 

Figure 2: Example of the Lagrangian domain covered by the finest level of grid patches. 

The temporal discretization of Equation (2) is based on the IMEX (Implicit-Explicit) 

scheme, a second order scheme described by Ascher [22]. This method allows the use of time-

advance schemes as the SBDF (Semi-Backward Difference Formula), MCNAB (Modified 

Cranck-Nicolson Adams-Bashforth), CNAB (Cranck-Nicolson Adams-Bashforth), and CNLF 

(Cranck-Nicolson Leap-Frog). The central difference scheme (CDS) is used to discretize the 

spatial terms of the equation. The Projection Method is used for the solution of the pressure-

velocity coupling, while the algebraic linear systems are solved by a multigrid technique. The 

Large Eddy Simulation (LES) with the standard Smagorinsky model was used to treat the 

turbulence phenomenon. 

The geometry of the valve is depicted in Figure 3. The IBM can reduce substantially the 

difficulty to represent complex geometries because it is not necessary to adapt the grid to the 

immersed boundaries.  

Lagrangian 

domain 

Eulerian 

domain 
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(a) – Top view (b) – Side view 

Figure 3: Valve model. 

For this initial work, the reed movement is imposed by a sine type function that describes 

the angle variation, α, with time (=3/48, A=/24, and =1.5 rad/s), 

  ( )         (   
  

 
) (9) 

In Equation (9), A stands for the angular movement amplitude, φ is the minimum angle and 

ω is the angular velocity. The mass flux in the feeding orifice is imposed by a group of points, 

indicated in Figure 4. For these Lagrangian points, velocity U
t+Δt

 in Equation (5) is taken as 

the desired velocity in the feeding orifice. Figure 5 shows the entire domain and the boundary 

conditions. The Eulerian domain is a 12d edge cube covered by 6 refinement levels, where the 

coarser level is formed by 24 cells in each direction. 

 

Figure 4: Tri-dimensional model highlighting the group of points imposing the velocity in the feeding 

orifice. 

Feeding 

points 
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Figure 5: Computational domain and boundary conditions. 

The results were obtained by using 73.038 nodes for the Lagrangian grid, while the 

Eulerian grid is composed of about 3.000.000 nodes, considering that the number of nodes 

varies with the effect of the adaptive refinement. The dimensionless parameters used to 

present the results are the Reynolds number, Red=Uad/, the dimensionless pressure, 

P
*
=P/(Ua

2
/2), and the dimensionless time, t

*
=Uat/d, where Ua is the average velocity at the 

orifice and d is the feeding orifice diameter. In this work, the representation of the immersed 

boundary with no-slip condition is evaluated by calculating the maximum L2 norm of the 

velocity vector at each Lagrangian point in the immersed boundaries. The L2 norm is defined 

by  

    
 

 
√∑ [(      )

  (      )
  (      )

 ] 
    (13) 

where ui, vi, and wi are the Eulerian velocity components, and uki, vki, and wki are the 

prescribed Lagrangian velocity components at the Lagrangian points describing the immersed 

boundaries. 

3 RESULTS 

First of all, the methodology was validated by solving the steady flow through a radial 

diffuser with s/d=0.07 (dimensionless gap between discs), D/d=1.2 (ratio between the 

diameter of the frontal disc, D, and orifice, d), for Red=2,500. Figure 6 presents the results for 

the pressure profile on the frontal disc comparing with the results obtained by using a Finite 

Volume Method (traditional method) and experimental results. The results were obtained for 

two different meshes with refinement ratio equal to two, so that it was possible to estimate the 

numerical error by using Richardson extrapolation. One can see a good agreement among the 

results. 
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Figure 6: Validation of the methodology (for NF=6) 

The methodology was then tested for moving reed for Reynolds number varying from 

1,000 to 8,000 using a time-step of the order of 10
-4 

and NF=3. Dimensionless pressure 

distributions on the reed surface are plotted using the coordinate system indicated in Figure 7. 

 

Figure 7: Reed surface with dimensionless variables x^=x/d and z^=z/d. 

The L2 norm is a very important parameter in this methodology because it defines the 

quality of the no-slip condition at the immersed boundaries. It was observed that the value of 

the L2 norm varies with the velocity of the reed. Its maximum value was 0.08 for α=11.25º, 

which is the position of maximum reed velocity, while the minimum value (0.01) was 

obtained for α=3,75º and α=18.25º, where the reed velocity is zero. These values showed to 

be sufficient to obtain the no-slip condition at the surfaces of the reed. In order to obtain lower 

norm values, the number of cycles of the multi-direct forcing (NF) should be increased. 

Figure 8 show pressure profiles for the opening movement of the reed in the x direction for 

Red=3,000. One can observe that the pressure profiles in the x direction for the several angles 

have the same pattern in general. As expected, the larger pressures occur in the circular region 

of the reed (1.0<x^<2.3). The pressure decreases from the center of the circular region of the 

reed (x^=1.6) to the exit of the flow due to the acceleration of the flow when it enters the 
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diffuser region (region between the reed and the seat). There is a small increase in the 

pressure for x^ smaller than 1.0, mainly for =6.25°, due to the decrease in the velocity after 

a recirculation bubble formed due to the acceleration of the flow. After this region the 

pressure decreases again due to friction effects. In addition, one can notice that the pressure 

decreases for increasing angles up to =11.25° due to the reduction of the friction forces of 

the flow in the diffuser region. For larger angles, the pressure starts increasing again owing to 

the deceleration of the reed. Figures 9 shows the velocity field at =6.25° for the opening 

movement where one can see the recirculation bubbles at the exit of the orifice region 

(entrance of the diffuser region). In addition, one can observe the stagnation region at the 

center of the circular part of the reed, where the pressure presents the maximum values.  

 

Figure 8: Pressure profile in the x direction for Red=3,000 (opening movement). 

 

Figure 9: Velocity field for Red=3,000 in a x-y plane passing through the orifice center line (opening movement 

for =6.25°). 

stagnation region 

(larger pressures) 
flow acceleration 

(smaller pressures) recirculating 

bubble 
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Figure 10 shows similar results for Red=8,000. The general pattern of the pressure profiles 

are analogous, excepts for =6.25°, in which one can see another pressure peak in the circular 

region of the read due to recirculating bubbles at the exit of the flow as can be seen in Figure 

10(c). Figure 11 depicts the pressure profiles at =6.25° for Reynolds number varying fron 

1,000 to 8,000. 

 

Figure 10: Pressure profile in the x direction for Red=8,000 (opening movement). 

 

Figure 11: Pressure profile in the x direction for the opening movement for =6.25°. 
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Figure 12 shows pressure fields for Reynolds numbers equal to 1,000, 3,000, and 8,000. 

One can note that the oscillations appearing in the pressure profiles on the reed surface 

(Figures 8, 10, and 11) are due to the formation of eddies in the diffuser region. As expected, 

the ddy formation increases as the Reynolds number also increase. 

 

(a) Red=1,000 

 

(b) Red=3,000 

 
(c) Red=8,000 

Figure 12: Pressure field in a x-y plane passing through the orifice center line (opening movement for =6.25°). 
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4 CONCLUSIONS 

A numerical methodology for simulating the flow in a more realistic model for reed type 

valves of reciprocating compressors is presented in this paper. The Immersed Boundary 

Method (IMB), which is an alternative method for solving problems with moving boundaries, 

is used to represent the geometry of the reed. In this first application of the method, the 

angular opening and closing movement of the reed is imposed by a sinusoidal function. 

Results for pressure profiles on the reed surface, velocity field and pressure field are presented 

for the opening movements of the reed and showed physical consistence with other results 

usually found in the literature. The main conclusion of the paper is that the IBM is a good 

alternative for solving the flow through reed type valves with complex geometry. The next 

step of the work is to introduce a structural model for the valve and compute the fully fluid-

structure interaction. 
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