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Abstract. In the present work, an airfoil with self adaptive camber is investigated. The
camber is passively adapted to the flow by a kinematic coupling between the leading and
trailing edge. For validation, the rigid NACA 643618 airfoil is simulated at different angles
of attack. Additional simulations are performed for a prescribed deflection at the leading
and trailing edge with a qualitatively good agreement to experimental data. Conducting a
series of fully coupled FSI simulations, a reduction in the lift coefficient of 44 % compared
to the rigid airfoil could be achieved. The results from the CFD are compared to those
of an inviscid panel method, where a deviation of approximately 10 % in the mean lift
coefficient for the FSI scenario is observed.

1 INTRODUCTION

Despite the fact that the computational resources have been constantly growing for the
last decades, the simulation of complex fluid dynamics problems such as the simulation
of turbulence by using Direct Numerical Simulations (DNS) or also Large-Eddy Simu-
lation (LES) is still limited to either simple geometries or moderate Reynolds numbers.
Thus, RANS (Reynolds Averaged Navier Stokes) models are still the preferred method
in industrial applications for pratically relevant Reynolds numbers. If URANS Methods
are applied to typical unsteady problems such as the flow around a square cylinder, the
results achieved by using RANS Models are quite satisfactory [3]. On the contrary, run-
ning simulations for naturally unsteady problems as a steady-state problem, the results
are quite different.
This clearly illustrates the potential of using RANS models for the simulation of Fluid-
Structure Interaction (FSI) problems. Those multiphysics simulations are unsteady in
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general due to the interaction between the different physics. The main aspects of not
statistically stationary flows can be captured by URANS if the time and length scales
of the coherent structures are much larger than the scales of turbulence resulting in a
separation of scales in the energy spectrum. For a rather slow structural motion, these
conditions are fulfilled. Usually a few vortex sheddings are sufficient to obtain qualita-
tively good phase-averaged results with RANS simulations. By reducing the integration
time, the overall computational cost is also reduced. Additionally, the requirements for
the mesh resolution in streamwise and spanwise directions are less demanding than for
all turbulence resolving methods.
The main objective of this work is to validate the use of URANS for the flow around
a NACA 643618 airfoil with self-adapting camber as proposed by Lambie [5]. For small
angles of attack (AoA), in this case α < 5◦, the airfoil is not fully stalled and a good agree-
ment between the numerical data and the experimental ones can be expected. Throughout
this work, the k − ω − SST model from Menter [6] is used since it is well known for its
good predictions in the field of aerodynamics problems. The results for a rigid airfoil
at different angle of attack are compared to experimental data as well as the ones for a
flexible leading and trailing edge with a fixed deflection angle. Additionally, a series of
FSI simulations for a fully coupled system are performed to evaluate the effect of grid
resolution, time step size and order of discretization on the mean lift coefficient.

2 GOVERNING EQUATIONS

In the following an incompressible fluid with constant fluid properties is considered.
For an incompressible Newtonian fluid, the flow has to satisfy the continuity and Navier-
Stokes equations in the following form:

∂ui
∂xi

= 0 , (1)

ρ
Dui
Dt

= − ∂p

∂xi
+ µ

∂2ui
∂x2j

. (2)

where ui is the velocity vector, p is the static pressure and µ is the dynamic viscosity.
Using the Reynolds decomposition,

u(x, t) = u(x) + u′(x, t) , (3)

where u is the mean motion and u′ is the fluctuating component, the RANS equations
can be derived from equation (2):

∂ui
∂xi

= 0 , (4)

ρ
Dui
Dt

= − ∂p

∂xi
+ µ

∂2ui
∂x2j

− ρ
∂u′iu

′
j

∂xj
. (5)
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Thus, equation (5) is the ensemble average of equation (2), where an additional term
arises. This additional term describes the momentum transport due to turbulence motion
causing a closure problem.

3 NUMERICAL METHODS

In the present work, we are performing numerical simulations using the finite volume
flow solver FASTEST [10] with block structured, boundary fitted grids. The convective
fluxes are approximated with the first order UDS or second order GAMMA scheme [4].
For the time discretization, we use a backward differencing scheme with second order
accuracy and the coupling between pressure and velocity is done with the SIMPLE algo-
rithm. The parallelization in FASTEST is done via domain decomposition using MPI. For
turbulence modelling, the k − ω − SST model from Menter [6] is used. For acceleration,
a geometric multigrid is applied to the momentum equations and in the case of fluid-
structure coupling, an implicit partitioned approach is used. To account for the mesh
motion, the ALE formulation of eq. 4 and eq. 5 is applied. For the mesh generation, a
transfinite interpolation [2] and an elliptic method [8] is used.

4 STRUCTURAL MODEL AND TESTCASE DESCRIPTION

In order to describe the structural motion of the airfoil, the model from Lambie [5]
is used. This model allows for heaving, pitching and flap motion, whereas the leading
and trailing edge are kinematically coupled. The Lambie-type airfoil will be described as
a two-dimensional multibody system, shown in figure 1. The structural model includes
the three degrees of freedom mention afore with the rotational axis for the leading and
trailing edge and the main body located at (0.2/0.02453), (0.7/0.02946) and (0.3/0.0)
respectively in the airfoil’s local reference frame. The coupling factor for the kinematic
coupling between the leading and trailing edge is set to n = 3. The resulting nonlinear
differential equations are given in the APPENDIX.

The aerodynamic forces, shown in figure 1, are calculated within the flow solver
FASTEST and sent to the structural model. After solving the equations of motion by a
fourth order Runge Kutta method, the resulting displacements are sent back to FASTEST
causing the motion of the boundary points and the remeshing. This iterative process is
repeated until the equilibrium within the time step between fluid and structure is reached.
For the fluid mesh, the first grid point in wall normal direction is located at y+ < 2 for
the entire airfoil as suggested in [5]. The final C-type mesh for all computations shown
in this work consists of 70500 CVs, whereas the airfoil is discretized by 110 CVs in cir-
cumferential direction. No-slip boundary conditions are applied on the airfoil, symmetry
boundary conditions are used in spanwise direction and typical inlet and outlet boundary
conditions are employed. To enable the deflection of the leading and trailing edge, the
edges of the red highlighted surfaces in figure 2 are regenerated using a cubic spline to
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Figure 1: Discrete forces on the Lambie-type airfoil

avoid any discontinuities in the surfaces wrapped around the airfoil. Thus, a gap between
the three different bodies can be avoided and preventing numerical problems related to
such a gap.

Figure 2: Surface representation of NACA 643618 airfoil with deformable surfaces highlighted in red

5 RESULTS AND DISCUSSION

5.1 VALIDATION

In order to demonstrate the behaviour of the chosen RANS turbuluence model, the flow
around a rigid NACA 643618 airfoil at Re = 1.36×106 for different AoA is simulated. The
results, presented in figure 3, are in good agreement to the measurements from Abott [1]
although the Reynolds number is about twice as big. The Reynolds number affects only
the cL,max value which might be slighly lower for our Reynolds number. For zero angle of
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attack, the results for cL deviate less than 1 %. The largest deviation can be found for
high AoA, where the airfoil is fully stalled. The deviations at large AoA (stall) are related
to the assumption of isotropic turbulence in the RANS approach which is clearly violated
in case of separated flows. It is also found that the chosen grid resolution is sufficient
for small AoA (α < 5◦), but has to be increased as the angle of attack increases. For all
simulations, the GAMMA scheme was used.
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Figure 3: Rigid airfoil: lift Coefficient versus angle of attack α, Re = 1.36 × 106

Additional simulations for a fixed flap configuration, γ = −5◦ (leading edge) and
δ = −10◦ (trailing edge), were conducted from α = 0◦ to α = 10◦. The flow around the
deflected leading and trailing edge is separated for all α investigated in this work. For
α = 0◦, the resulting flow field is illustrated in figure 4, where the separation at the trailing
edge can be clearly detected. Again, a strong grid dependency can be found for large values
of α. The second order upwind scheme is applied in all simulations. In comparison to the
experiment, a very similiar trend for the slope can be found: the deflection of the leading
edge reduces the slope from the theoretical value of ∂cL/∂α = 2π. The increase in the
lift coefficient is directly related to the geometrical changes at the trailing edge. Due to
the presence of three dimensional effects within the experiment, the experimental results
are corrected according to the empirical formula from Betz [7] which is suggested by
Lambie [5]. The simulated curve is in between the measured and corrected experimental
values. In the simulations the deflected airfoil is fully stalled at α ≈ 5◦, whereas in the
experiments the stall angle is at α ≈ 8◦ for the corrected case and about α ≈ 13◦ for the
uncorrected one. Based on the results presented, we will focus on small angles of attack
for the following coupled fluid-structure interaction simulations.
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Figure 4: Isolines of streamwise velocity for γ = −5◦ (leading edge) and δ = −10◦ (trailing edge),
deformable surfaces highlighted in red

5.2 FLUID-STRUCTURE INTERACTION

For the fully coupled simulation, the structural parameters are set to the ones used by
Lambie [5] for the enhanced model. The torsional spring stiffness kγ is set to 500 Nm/rad.
Within this study, the simulations presented in table 1 have been performed in order to
investigate the effect of different grid spacings, time step sizes and discretization orders
on the mean lift coefficient at the final equilibrium. Additionally, the aerodynamic forces
and moments as well as the final displacements are compared to simulation conducted
with an inviscid panel method. The results for the lift coeffcient are given in table 1.
All simulations were run for at least 10 seconds in physical time to ensure that the
state of equilibrium was reached (see figure 6), whereas the computational time step was
∆t = 2 × 10−4.

Table 1: Overview of the simulations performed and resulting mean lift coefficient at equilibrium

Grid spacing Time step size scheme cL
case 1 2h 2∆t UDS 0.28
case 2 h 2∆t UDS 0.29
case 3 2h ∆t UDS 0.28
case 4 2h 2∆t GAMMA 0.29

panel [9] - - - 0.32

The results in table 1 indicate that the results for the mean lift coefficient are hardly
affected by refining the grid or the time step, or the discretization method. The lift
coefficient obtained from an inviscid panel code is about 10% higher than in the CFD
case. However, the results for the equations of motion are in very good agreement as it
is shown for the pitching motion in figure 6. For the remaining degrees of freedom, the
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Figure 5: Lift Coefficient versus angle of attack α, Re = 1.36 × 106 for γ = −5◦ and δ = −10◦

deviation is always less than 10 %. The largest difference occurs for the aerodynamic
moment on the leading edge. Whereas a positiv moment is predicted by the panel code, a
negative value is calculated in the CFD and thus, mainly causing the difference in the lift
coefficient. Note that for an inviscid panel method, drag forces cannot be calculated. Since
the negative rotational angle at the leading edge causes an increase in drag, this effect also
influences the overall results but is not captured within the panel code. Additionally, the
deformation of the airfoil is handled differently such that the deformed airfoil differs in the
red highlighted sections shown in figure 2. Comparing the results obtained for the fully
coupled simulation of a flexible airfoil to those of a rigid airfoil, the mean lift coefficient
could be reduced by approximately 44%. Thus, the potential of the Lambie-type airfoil
could also be demonstrated numerically. A direct comparison to experimental data is not
possible here, since the experimental setup did not allow for heaving and pitching.

6 CONCLUSION

A series of computations for a rigid airfoil, a flexible airfoil with prescribed deflections
and fully coupled FSI simulations have been performed. For the rigid airfoil, the mesh
resolution has been investigated. The resolution has to be increased as the angle of attack
increases. However, for small angles of attack, α < 5◦, the results were in good agreement
to experimental data. A qualitatively good agreement could also been found for the
flexible airfoil for γ = −5◦ (leading edge) and δ = −10◦ (trailing edge). In the fully
coupled FSI simulations a reduction in the mean lift coefficient of 44 % for the flexible
airfoil compared to the rigid one could be achieved. The results from the CFD showed a

7



S. Türk, H. Spiegelberg, M. Schäfer, C. Tropea and D.C. Sternel
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Figure 6: Time history of pitch angle for CFD simulations and panel method

difference of about 10 % to an inviscid panel method. In the future, the simulations will
be repeated by using hybrid RANS/LES turbulence models to account for the anisotropic
effects arising from the separation.
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APPENDIX

For the discrete forces on the Lambie-type airfoil, presented in figure 1, and its cor-
responding topolgy in figure 7, the resulting nonlinearized equations of motion are given
in [9] as follows:

mAq̈1 + d1q̇1 + k1q1

−q̈2(SCx cos q2 + SCz sin q2)

+q̇22(SCx sin q2 − SCz cos q2)

+(q̇2 + q̇3)
2
(
SBx sin(q2+q3) − SBz cos(q2+q3)

)
−(q̈2 + q̈3)

(
SBx cos(q2+q3) + SBz sin(q2+q3)

)
−
(
nq̈3 + n′q̇23 + q̈2

) (
SDx cos(q2+δ) + SDz sin(q2+δ)

)
+

+ (nq̇3 + q̇2)
2
(
SDx sin(q2+δ) − SDz cos(q2+δ)

)
=FAzaero cos q2 − FAxaero sin q2

(6a)

Θ
(Co)
A q̈2 + d2q̇2 + k2q2 + q̈3(Θ

(Bo)
B + nΘ

(Do)
D ) + n′Θ

(Do)
D q̇23

−q̈1 (SCx cos q2 + SCz sin q2
+SDx cos(q2+δ) + SDz sin(q2+δ) + SBx cos(q2+q3) + SBz sin(q2+q3))

−(2q̇2q̇3 + q̇23)
(
SBx(x

C
Bo

sin q3+zCBo
cos q3) − SBz(x

C
Bo

cos q3−zCBo
sin q3)

)
+(2q̈2 + q̈3)

(
SBx(x

C
Bo

cos q3−zCBo
sin q3) + SBz(x

C
Bo

sin q3+zCBo
cos q3)

)
−(n2q̇23 + 2nq̇2q̇3)

(
SDx(x

C
Do

sin δ+zCDo
cos δ) − SDz(x

C
Do

cos δ−zCDo
sin δ)

)
+(nq̈3 + n′q̇23 + 2q̈2)

(
SDx(x

C
Do

cos δ−zCDo
sin δ) + SDz(x

C
Do

sin δ+zCDo
cos δ)

)
=MAaero

(6b)

q̈3(Θ
(Bo)
B + n2Θ

(Do)
D ) + q̇3

(
d3 + d4n

2
)

+ k3q3

+k4nδ(q3) + nn′Θ
(Do)
D q̇23 +Mspr(q3)

−q̈1 (+SBx cos(q2+q3) + SBz sin(q2+q3)
+SDxn cos(q2+δ) + SDzn sin(q2+δ))

+q̈2 (nΘ
(Do)
D + Θ

(Bo)
B

+SBx(x
C
Bo

cos q3 − zCBo
sin q3) + SBz(x

C
Bo

sin q3 + zCBo
cos q3)

+SDxn(xCDo
cos δ − zCDo

sin δ) + SDzn(xCDo
sin δ + zCDo

cos δ))

+q̇22 (SBx(x
C
Bo

sin q3 + zCBo
cos q3) − SBz(x

C
Bo

cos q3 − zCBo
sin q3)

+SDxn(xCDo
sin δ + zCDo

cos δ) − SDzn(xCDo
cos δ − zCDo

sin δ))

+Mspr(q3)

= MBaero + nMDaero

(6c)
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Figure 7: Topology of the Lambie-type airfoil

In order to simplify the equations some general terms have been defined

Θ
(Co)
C = Θ

(Ccm)
C +mC((xCCcm

)2 + (zCCcm
)2), (7)

Θ
(Bo)
B = Θ

(Bcm)
B +mB((xBBcm

)2 + (zBBcm
)2), (8)

Θ
(Do)
D = Θ

(Dcm)
D +mD((xDDcm

)2 + (zDDcm
)2), (9)

Θ
(Co)
A = Θ

(Co)
C + Θ

(Bo)
B + Θ

(Do)
D

+mB((xCBo
)2+(zCBo

)2) +mD((xCDo
)2+(zCDo

)2)

(10)

mA = mB +mC +mD (11)

SBx = mBx
B
Bcm

(12)

SBz = mBz
B
Bcm

(13)

SCx = mCx
C
Ccm

+mBx
C
Bo

+mDx
C
Do

(14)

SCz = mCz
C
Ccm

+mBz
C
Bo

+mDz
C
Do

(15)

SDx = mDx
D
Dcm

(16)

SDz = mDz
D
Dcm

(17)

FAxaero = FBxaero + FCxaero + FDxaero (18)

FAxaero = FBzaero + FCzaero + FDzaero (19)

MAaero = MBaero +MCaero +MDaero

−xCBo
FBzaero + zCBo

FBxaero − xCDo
FDzaero + zCDo

FDxaero

(20)
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