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Abstract. The new computational model for the seismic wave propagation in the initially 

prestressed media is proposed, the governing equations of which are written in terms of 

velocities, stress tensor and small rotations of element of the medium. The properties of 

wavefields in the prestressed medium are studied and some examples showing anisotropy of 

prestressed state are discussed. The staggered grid numerical method is developed for solving 

the governing equations of the model and numerical example is presented. 
 

 

1 INTRODUCTION 

Analysis of seismoacoustic wavefields is the basic tool for the study of internal structure of 

Earth and rock masses in the mining technology. The seismic wave properties can depend not 

only on the material characteristics of the formation (density and speeds of sound), but in 

addition on the existence of zones of non-hydrostatic stress field. These prestressed zones can 

be caused by many factors, such as geotectonic processes, gravity, temperature gradients, etc. 

In the mining area these zones, for example, can be caused by the underground excavation 

during shaft sinking. The impact of prestressed zones on seismic waves is a poorly studied 

problem and one can expect that the account of initial stress can have an influence on 

interpretation of the results of solution of inverse problems and seismic imaging.  

The basis of the theory of elastic waves in prestressed elastic media goes back to the 

pioneer work of M. Bio [1]. An application of the theory to seismic problems was not 

systematic (see, for example, [2], [3] and references therein) and there is still an open area for 

research work. 

We propose a new computational model for the small amplitude wave propagation in the 

prestressed medium, the simplified version of which is presented in [4]. The derivation of the 

model is based on the general theory of finite deformations and as a result, the governing 

equations in terms of velocities, stress and small rotations are formulated in the form of the 
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first order hyperbolic system. The method of derivation is applicable for an arbitrary 

dependence of elastic energy on the invariants of strain tensor and the smallness of the initial 

strain tensor is not required in general. For the quadratic dependence of the elastic energy on 

the strain tensor the governing equations of the small amplitude wave propagation in the 

initially prestressed medium are derived. The properties of the wavefields in the prestressed 

medium are discussed. The second order accuracy in space and time staggered grid method is 

developed and a numerical test problem for the wave propagation in the unidirectionally 

stressed medium in the presence of stress gradient is presented. 

2 DERIVATION OF GOVERNING EQUATIONS 

2.1 Strain and stress tensors in the prestressed elastic medium 

In this Section the method of derivation of governing equations for small amplitude wave 

propagation in the prestressed elastic medium is described. This method is based on the 

presented in [5] relationship between stress rate and strain rate in the hypoelastic 

representation of the hyperelastic model of solid. The governing equations are formulated in 

Lagrangian coordinates, but the method of derivation requires an introduction of Eulerian 

coordinates. In addition, it is necessary to define the reference unstressed configuration with 

its own coordinates of unstressed state.  

Denote    Eulerian coordinates of the particle of the medium and   
  corresponding 

Lagrangian coordinates. Assume that the element of the medium in Lagrangian coordinates 

containing this particle is prestressed, that is nonzero stress field exists inside this element. 

Let us introduce coordinates    of the particle corresponding to the unstressed reference state 

of the element. Thus, the following parameters characterizing the deformation of element can 

be introduced: (  ) 
  

   
 

   
, ( ) 

  
   

   
  . Here (  ) 

  and ( ) 
  are deformation gradients 

characterizing deformation from the unstressed reference configuration to the Lagrangian 

configuration and from the Lagrangian configuration to the current Eulerian configuration 

accordingly. Furthermore, the total deformation from the reference unstressed state to the 

current Eulerian state is characterized by the total deformation gradient (    ) 
  

   

   
 

( ) 
 (  ) 

 . For our purpose it is more appropriate to use inverse to above defined 

deformation gradients:  

(  ) 
  

   

   
        ( ) 

  
   

 

   
      (    ) 

  
   

   
 (  ) 

 ( ) 
  

Below the Finger strain tensor is used as a measure of deformation and the total strain from 

the unstressed state to the current configuration is characterizes by 

( )   (    ) 
 (    ) 

  ( ) 
 (  ) 

 (  ) 
 ( ) 

 
. 

Thus, ( )   ( ) 
 (  )  ( ) 

 
, where (  )   ( 

 ) 
 (  ) 

  is the Finger strain tensor 

characterizing deformation from the unstressed state to Lagrangian configuration. Further we 

will use the matrix form of the Finger tensor, which reads as        , where the 

superscript   denotes a matrix transposition.  

     For the derivation of governing equations we use the so-called hyperelastic model which is 
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based on the fundamental laws of thermodynamics. If the specific elastic energy 

 (         ) is the known function of the strain tensor, then, according to [6], the Cauchy 

stress tensor in Eulerian configuration is given as 

                                                                  
  

    
   ,                                                         (1) 

where         (    )⁄  is the mass density and       is the density of the medium in the 

unstressed state. For the isotropic medium the elastic energy depends on invariants of the 

strain tensor. Note that the density can be represented as a function of the Finger tensor as 

     √        √        (   )    √   (   )  

where       √      is the Lagrangian density.  

 

2.2 Equations of motion 

     The governing equations for the prestressed medium motion consist of the momentum 

conservation laws and evolution equations for the parameters characterizing deformation. 

Denoting    the velocity vector, the momentum equation in Eulerian coordinates can be 

written in a standard form and reads as 

                                                       
    

  
 
 (         )

   
                                                           ( ) 

What concerns an evolution of the strain parameters, it requires thorough consideration.   As a 

consequence of the definition of deformation gradient ( ) 
  

   

   
   the following evolution 

equation in matrix form can be derived: 

                                                                            
  

  
                                                                         ( ) 

where   [( ) 
 ]        [

   

   
]  is the velocity gradient and 

 

  
 

 

  
   

 

   
 is the 

material derivative. Note that the Finger tensor   , characterizing deformation from the 

reference unstressed state to Lagrangian configuration, does not change during the motion, i.e. 

   

  
    

As a consequence of these two equations for   and    the evolution equation for the Finger 

tensor can be derived 

                                                                
  

  
                                                                          ( ) 

Our goal is to derive the small amplitude wave equations in terms of stress tensor. That is why 

we have to write out the evolution equation for    . Such a derivation has been done in [5] for 

the isotropic elastic medium. Since the elastic energy is a function of the three invariants of  

strain tensor, one can prove with the use of Cayley-Hamilton theorem that stress tensor is a 

quadratic polynomial of strain tensor 

             
   

where          are the functions of invariants of    
From the above representation for   one can derive the following equation 

  

  
                                   (  )   
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  (     )     

            (  )        ( 
  )                    ( ) 

 

 
  ( 

      )     
    (  )         ( 

  )      
    (   )  

Here   
 

 
(    ) is the strain rate tensor in Eulerian coordinates, coefficients 

            are functions of invariants of   and depend on the partial choice of elastic 

energy  . Thus, equations (2) - (5) can be used for the derivation of the small amplitude wave 

propagation in the prestressed isotropic medium with the arbitrary dependence of the elastic 

energy on three invariants of the strain tensor. 

 

2.2 Equations for small amplitude wave propagation in the prestressed medium with 

the quadratic dependence of elastic energy on the strain tensor 

     In Section 2.1 the basic equations and relationships were formulated allowing one to derive 

governing equations for the small amplitude wave propagation in the isotropic medium with 

the elastic energy given as an arbitrary function of invariants of strain tensor. In this Section 

we present such equations for the case of quadratic dependence of energy on strain tensor.      

     Assume that the energy is given as a function of the Almansi strain tensor   [   ]  
 

 
(   ) in the following form 

  
 

    
(            )

  
 

   
(      )  

where     are the Lame parameters. For the above choice of energy function the stress tensor 

computed by (1) takes a form 

                                             
 

   
(                           )                                    ( ) 

Assume that the stress tensor is a sum of the initial stress Σ and its perturbation  :  

     . 

Further assume that the initially prestressed state of the medium is known and its stress field 

satisfies equilibrium equations in Lagrangian configuration 

    

   
 
    

where     is connected with the Almansi tensor of the prestressed state by the linearized 

relation (6) which reduces to the classic Hooke’s law                 . 

     We will derive equations in Lagrangian coordinates but with the use of the Cauchy stress 

tensor referred to Eulerian coordinates in order to obtain equations in terms of symmetric 

stress tensor. Introduce the small deformation and small rotation tensors by the following 

relations: 

    
 

 
(
   

   
 
   

   
)          

 

 
(
   

   
 
   

   
)  

where    is the displacement vector,         
 , so that   

    
  

   

   
. The evolution 

equations for     and     read as 
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(
   

   
 
   

   
)                                     ( ) 

Using all above definitions, transforming equations (2), (3), (5), (6), (7) to Lagrangian 

coordinates, assuming that                 are small, and neglecting all terms of order higher 

than the first one, we obtain the following system in terms of velocities, stress and rotations.  

   (      )
   

  
 
    

   
 
 (       )

    

   
 
   

  

  
        

                                           

                                      (    )                                                   ( )   
 

    

  
 
 

 
(
   

   
 
 
   

   
 
)       

    

  
 
 

 
(
   

   
 
 
   

   
 
)  

Here    [
   

   
 ] is the Lagrangian velocity gradient,    

 

 
(     

 ) is the Lagrangian 

strain rate tensor. The initial Almansi strain tensor can be expressed via initial stress Σ as 

   
 

  
(  

 

     
     )   The equation for small deformation   is included to system (8) in 

order to avoid the derivation of relationships between stress tensor  , small rotation tensor  , 

and small deformation tensor  .  

3 PROPERTIES OF WAVEFIELDS IN PRESTRESSED MEDIA 

     It is obvious that system (8) and conventional linear elasticity equations for isotropic 

media are different. Coefficients of equations (8) depend on the values of initial stress tensor 

and their spatial derivatives. It turns out that this difference drastically changes the character 

of elastic waves and leads to their anisotropy and dispersion. To prove this fact one can 

consider the second order equations system for velocities which can be derived from (8) by  

differentiating velocity equations with respect to   and exclusion of stress derivatives with the 

use of equation for  : 

                                                
    

   
      

    

   
 
   

 
     

   

   
                                                     ( ) 

Here        
     

 
⁄ , moduli       depend on the initial stress tensor    . It is obvious that 

the initial stress results in the anisotropy of the medium. Moreover, the term containing first 

derivatives of the velocities in (9) can result in attenuation and dispersion of the waves. 

     As an example we consider the unidirectionally stressed state with the initial stress field 

given as                (     ). In this case elastic moduli are computed as 

            
  (   )

 (     )
                

 (    )

 (     )
     

      
 (    )

 (     )
                  

 (    )

 (     )
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 (    )

 (     )
                                     

           
   

 (     )
                  

 (    )

 (     )
   

                                      
   

 (     )
    

                                     
  

     
      

                                           
  

     
     

where the common relation between        and     is used by the following correspondence 

of indices:                                       . 

     On Figure 1 one can see the plane waves velocity distribution for the unidirectionally 

stretched medium with          
           (     ) (left) and compressed medium 

with          
           (     )  (right) with parameters    √(    )      

            √                            
    Dots correspond to the wave 

velocity distribution in the initially unstressed medium. The anisotropy in longitudinal and 

shear wave propagation in the prestressed medium is clearly seen in both cases.  

                                                                                              

              
 

Figure 1: Velocity distribution for the unidirectionally stretched (left) and compressed (right) media. 

FINITE DIFFERENCE STAGGERED GRID NUMERICAL METHOD 

As a numerical tool for solving differential equations (8) the staggered grid finite difference 

method has been developed, which is similar to proposed in [7] and has the second order 

accuracy in space and time. Below we denote spacial coordinates as      
        

  and do 

not distinguish upper and inferior indices. On Figure 2 the definition of the staggered grid is 

presented. The velocities and densities are computed at the points marked by circles, while  
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stress, strain and rotation tensors as well as elastic moduli are related to the points marked by 

squares. On Figure 3 the structure of finite differences is shown: at the midpoint of dot line 

between circles or squares the arithmetic mean of corresponding values is used.  Thus, the 

finite difference method for (8) reads as 

  
  
      

 

 
       

     
 (   

     
    

     
)      

     
  

   
     

    
     

 
           

   

   
     

    
     

 
 
     

       
 

 
      
   
     

    
     

 
 
     

       
 

 
  

Here     are the difference approximation of spatial derivatives: 
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]  

   
   

(     )  

   (     )   
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  (      ⁄        ⁄ )    (      ⁄        ⁄ )

 

 
  (      ⁄        ⁄ )    (      ⁄        ⁄ )

 
]  

   
   

(     )  

 

 

                    
Figure 2: Staggered grid definition. The density and velocities are related to circles. Stress, strain, rotation 

tensors and elastic moduli are related to squares.   
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One can prove that the stability condition for this method in the two-dimensional case is 

similar to that formulated in [7]:    
 

      
   √  

    
   where     is the speed of 

longitudinal wave at grid points. 

            

                  

Figure 3: The structure of finite differences. At the midpoint of dot line between circles or squares a mean value 

of corresponding variables is used.   

 

4    WAVE PROPAGATION IN THE UNIDIRECTIONALLY PRESTRESSED MEDIA 

IN THE PRESENCE OF THE GRADIENT OF INITIAL STRESS 

In this Section a numerical test problem aimed to demonstrate an influence of the initial 

stress on the wave field generated by the Ricker wavelet is considered. The computations are 

made by the staggered grid method presented in the previous Section. The test problem is 

formulated as follows. The computational domain (     )  [   ]  [   ]        is a 

square, in which the initial stress is given as      (  )  
     (     ), where  (  ) is 

the linear function of   :  (  )  
 

  
(  

   

 
). It is obvious that the above stress field 

satisfies equilibrium equations. The maximal tensile stress          is on the bottom of 

the computational domain and the maximal compression with           is on the top of 

the domain. The parameters of the medium are                            

         , and         
 . The source of elastic waves with       dominant frequency is 

located in the centre of the domain. On Figure 4 the snapshot of    stress component     is 

presented. It obvious that the wave velocities decrease towards to the bottom and increase 

towards to the top of computational domain. This effect is caused by the effect of 

compression of the upper part of the domain and tension of the lower part. On Figure 5 and 

Figure 6 the seismograms recorded by receivers in the upper and lower parts of the domain 
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are shown. The receivers are  located on the horisontal straight lines corresponding to      

and      on vertical axis. Red curves correspond to the prestressed medium, black curves  

 
 

Figure 4: The snapshot of the vertical component of stress tensor. 

 

correspond to the unstressed elastic medium. It is clearly seen the dependence of wave 

velocities on the spacial direction.  

5 CONCLUSIONS 

- The method of derivation of the governing equations for the small amplitude 

wave propagation in the initially prestressed medium is proposed. 

- Governing equations for elastic waves in prestressed medium are derived in the 

case of quadratic dependence of elastic energy on the strain tensor. 

- Properties of wavefield in the unidirectionally prestressed medium are discussed 

and it is demonstrated that the initial stress can have a significant influence on 

the character of wave propagation. 

- The existence of prestressed zones must be taken into account for the forward 

modeling and inversion of seismic waves.    
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Figure 5: Seismograms recorded by receivers in the upper region. Red lines correspond to the prestressed 

medium, black lines correspond to the unstressed medium. 

Figure 6: Seismograms recorded by receivers in the lower region. Red lines correspond to the prestressed 

medium, black lines correspond to the unstressed medium. 
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