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E. Oñate, J. Oliver and A. Huerta (Eds)

KINETIC MODELS WITH ROTATIONAL DEGREES OF
FREEDOM FOR HYBRID METHODS

S. COLONIA∗, R. STEIJL∗ AND G. BARAKOS∗

∗ CFD Laboratory
School of Engineering - The University of Liverpool

The Quadrangle, Liverpool L693GH, United Kingdom
e-mail: gbarakos@liverpool.ac.uk

Key words: High-speed, Rarefied, Kinetic Boltzmann Models, Diatomic Gas.

Abstract. Flow fields where localised rarefaction phenomena are relevant, occur in vari-
ous engineering applications such as supersonic/hypersonic and micro-flows. The methods
that are commonly employed to simulate rarefied flows, Direct Simulation Monte Carlo
(DSMC) and discrete-velocity methods for kinetic Boltzmann equations, require higher
computational cost than continuum methods. This has motivated the development of
hybrid techniques which restrict the use of the expensive non-continuum approaches to
regions where significant non-equilibrium effects occur. In the present work, a computa-
tional framework which includes methods for the kinetic Boltzmann equations, and has
been successfully employed for different monoatomic cases [1], is improved and used to
predict rarefied high speed flows. A novel aspect of the method is the parallelisation of
the computational load. While in the literature, a split of either the physical space or the
phase space among the processors is employed, the current framework allows both levels
of parallelisation at the same time. For rarefied gas flows at high velocities it is necessary
to take into account the excitation of the internal degrees of freedom; these flows are
characterised by large non-equilibrium regions with multiple temperatures (translational,
rotational and vibrational temperature). For this reason, the framework has been recently
developed with the addition of kinetic models for diatomic gases, presented in [2, 3], which
are based on the assumption that the fraction of collisions involving the excitation of the
rotational degrees of freedom is a given constant or is a function of the flow temperatures.
As a first stage the rotational degrees of freedom has been taken into account for the cases
of normal shocks, and a flat plate. Furthermore, kinetic models for diatomic gases are
not yet established in the context of the hybrid approaches and the coupling between a
diatomic kinetic model and a Navier-Stokes solver still presents a number of challenging
tasks. Among them, the evaluation of a different way of coupling in order to increase the
efficency of the hybrid approach is also objective of the present work. Indeed, to reduce
the computational cost of hybrid simulations by reducing the region where the expensive
method is needed, a Gas-Kinetic Scheme based on the Rykov model is proposed.
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1 INTRODUCTION

With the increased interest in hypersonic vehicles, there is a need for efficient and
accurate prediction of the flow field, aerodynamics and heat transfer throughout their
flight regime. Hypersonic vehicles generate flow fields that can range from completely
rarefied to continuum. At intermediate altitudes, the flow around hypersonic aircraft can
be characterised as being mainly continuum with localised areas (generated by the rapid
expansion in the wake of the vehicle as well as by strong gradients in shock waves and
boundary layers) that display translational non-equilibrium effects. The flow conditions
near the vehicle surface and in the wake determine the drag and the heat transferred to
the vehicle and its payload, so it is important that these regions are simulated accurately
using appropriate physical models. If the gradients of the macroscopic variables become
so steep that their scale length is of the same order as the average distance travelled
by molecules between collisions, the number of impacts is not enough to drive the fluid
towards a local thermodynamic equilibrium. In this condition the flow can no longer
be considered a continuum flow and the transport terms in the Navier-Stokes equations
fail since the constitutive relation is not valid. The mathematical model at molecular
level is the Boltzmann equation (BTE) [4], and for the regions of the flow field where
highly non-equilibrium effects occur the Direct Simulation Monte Carlo method [5] is
employed to statistically estimate the solution of the BTE. Alternatively a discrete velocity
method can be used to solve a kinetic model approximation of the BTE [6, 7, 2]. These
approaches require a cost in computational time and memory considerably higher than
the flux evaluations commonly employed to simulate continuum flows. For this reason, to
simulate flow fields where continuum and rarefied regime coexist, hybrid techniques have
been introduced, [8]. In these methods the expensive approach is employed only where
needed and is coupled with a finite-volume scheme for the Navier-Stokes equations that
is used where the flow is in thermal equilibrium. Usually an hybrid technique couples two
different simulation methods by means of an exchange of information between the parts
of the domain where they are employed. In recent works, this has been achieved using
an overlap region where flow state variables or numerical fluxes are exchanged between
the two models, [9], or employing a buffer region where the two models are blended
at equation level [10]. Recent works on multi-physics methods focused on rarefied high
Mach flow can be found in [11, 12, 13]. All these works follow the principle defined above,
while an alternative approach is presented in [14, 15]. Indeed, the Unified Gas-Kinetic
Scheme (UGKS) uses a finite-volume method where the numerical fluxes are based on
the solution of the Shakhov model [7] for a monoatomic gas, or the Rykov model [2] for
a diatomic gas with rotational non-equilibrium. This allows the UGKS to simulate flows
in both continuum and rarefied regime. The framework presented in [1] has been recently
developed with the addition of the Rykov model and an Ellipsoidal-Statistical (ES) model
for diatomic gases [3] which will be evaluated and compared in the first part of the paper.
In order to reduce the computational cost of an hybrid simulation it is possible to pursue
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a way of reducing the region where the expensive method is needed and to do so, in the
second part of the work, we propose a Gas-Kinetic Scheme (GKS) based on the Chapman-
Enskog (CE) expansion for the non-dimensional Rykov model, 2. The GKS enables the
simulation of flows in near continuum regime at a lower cost than that of the discrete
velocity kinetic solver. This approach, due to the use of the CE expansion, is limited to
near-continuum regions but is simpler than the UGKS for diatomic gases presented in
[15].

2 NON-DIMENSIONAL RYKOV MODEL

We will consider the flow of a diatomic gas and we will assume that the gas temperature
is not too high, so that the vibrational degrees of freedom are not excited, and not too
low, so that the rotational degrees of freedom may be considered fully excited. In this
case the particle distribution function f(x, c, t, ǫr), which describes the state of the gas,
will be a function not only of the spatial coordinate x, the particle velocity c and the time
t, but also of the rotational degrees of freedom ǫr. The Rykov model has been proved
to be a reliable kinetic approximation of the Boltzmann equation for this kind of flow,
[2, 16, 17, 15], and will be employed in the present work. Substituting the non-dimensional
variables defined in appendix A in the Rykov model, [2], written in terms of F = mf we
obtain

∂F0

∂t
+ c∂F0

∂x
=

F eq
0

−F0

τ
; ∂F1

∂t
+ c∂F1

∂x
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F eq
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(
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(1)

where
FM(T ) = ρ

(πT )3/2
exp

(

− c′2

T

)

(2)

and the total collision time τ is expressed as µt/pt with the viscosity determined from
the translational temperature. The model is based on the assumption that the fraction of
collisions involving the excitation of the rotational degrees of freedom is a given constant
or a function of the flow temperatures by means of the collision number, Zr, which is
discussed in appendix B. In order to make the system (1) complete, an expression for
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µ is necessary (see appendix C) and the value of the constants δ, ω0 and ω1, need to be
determined. In [18] ω0 = 0.2354 and ω1 = 0.3049 or ω0 = 0.5 and ω1 = 0.286 are given for
diatomic gases. Both pairs of values have been successfully employed in [16, 17, 18, 19]
with δ−1 = 1.55. The dimensionless macroscopic quantities can be obtained from F0 and
F1 by means of the formulas of appendix D.

3 NON-DIMENSIONAL ELLIPSOIDAL-STATISTICAL MODEL FOR DI-

ATOMIC GAS

In [3], for the polyatomic ES model, a parameterKint is introduced to define the number
of internal degrees of freedom. For a diatomic molecule without vibrational excitation,
two rotational degrees of freedom are present, i.e. Kint = 2. The model introduces a
modified BGK collision operator by replacing the Maxwellian equilibrium function by a
generalised Gaussian function with a corresponding modification to the collision operator.
Considering the non-dimensional variables defined in appendix A

∂F0

∂t
+ c∂F0

∂x
=

FES
0

−F0

τ
(

1−ν+θν
) ; ∂F1

∂t
+ c∂F1

∂x
=

FES
1

−F1

τ
(

1−ν+θν
) (3)

where the equilibrium function is an anisotropic Gaussian

FES
0 = ρ√

det(πΛ)
exp

(

− c′ ·Λ−1 · c′
)

FES
1 = TrelF0.

(4)

The matrix Λ is defined as

Λ =
(

1− θ
)

(

(

1− ν
)

TtrI+ νΘ
)

+ θTeqI ; ρΘ =
∞
∫

−∞

c′ ⊗ c′F0d~u (5)

with ρΘ the opposite of the stress tensor and 0 < θ < 1 and −1/2 ≤ ν < 1 two relaxation
parameters . The macroscopic variables and Trel definitions can be found in appendix E.

4 EVALUATION OF THE RYKOV AND THE ELLIPSOIDAL-STATISTICAL

MODELS FOR DIATOMIC GAS

For a monoatomic gas the Rykov and the polyatomic ES models reduce, respectively, to
the Shakhov model and the monoatomic ES model [23]. In [24] a comparison of the latter
monoatomic models is presented showing that the Shakhov model predicts more accurate
numerical solutions than the ES model in most of the test cases presented except when
the flow is mostly driven by heat transfer. In the present work, the two diatomic kinetic
models are firstly compared with the DSMC results reported in [20], for normal shocks at
Mach numbers 2.8 and 10. From figures 1a and 1c the Rykov model achieves a slightly
better agreement with the DSMC results that the polyatomic ES model. Agreement
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that can be further improved employing a variable collision number. Looking at figures
1b and 1d, it is clear that using equation (34) to approximate variations of Zr with
rotational and translational temperatures improves the agreement between the DSMC
method and the Rykov model. Note that in the ES model the relaxation parameter θ
is related to the collision number as θ = 1/Zr and at the moment the model does not
consider a variation with translational and rotational temperature. As a further step, the

(a) M= 2.8 (b) M= 2.8 (c) M= 10 (d) M= 10

Figure 1: Non-dimensional density, rotational (T r) and translational (T t) temperature
profiles for normal shocks in a diatomic gas. DSMC results from [20].

kinetic models have been used to predict the 2D flow field around a flat plat for which
experimental data of temperature profiles in the boundary layer are available in [22].
Details of the experiment and DSMC simulation can be found in table 1. For this case,
a novel implementation of the discrete velocity method for kinetic Boltzmann equations
has been employed. To reduce the large computational time and memory requirement of
discrete velocity methods, a two-level parallelisation is considered in the computational
framework to make the solver more flexible when running on a large number of cores.
This allows to split among the cores not only the physical space but also the phase space.
The basic concept is straightforward; if we divide the phase space on n cores, running the
simulation on m cores will lead the physical space to be divided among m/n groups of
cores. For this particular case a structured grid of 250K points divided in 48 blocks and
a velocity space discretised in 60 points per direction have been chosen.

Mach number M = 4.89
Knudsen number (L = 5mm) Kn = 0.024
Reynolds number (L = 5mm) Re = 422
T∞ = 116K
Tplate = 290K

Table 1: Flat plate test case conditions [22].
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Dividing the velocity space on 16 cores, 4 per direction, the case has been run employing
512 cores on the Chadwick cluster [25] of The University of Liverpool, which means 32
groups of 16 cores among which the 48 blocks are allocated. The Rykov model with
Zr given by equation (34) leads to good agreement with both experimental and DSMC
results, but it slightly over-predicts the translational temperature in the thermal layer,
as it can be seen from figure 2a. Looking at figure 2b, it is clear that the polyatomic
ES model slightly under-predicts the rotational temperature near the wall, leading also
to a higher temperature gradient at the wall compared to the Rykov model with Zr

from equation (34). As the Rykov model, the polyatomic ES model predicts a higher
translational temperature in the thermal layer. Considering figures 3a and 3b, the same
behaviour is noticed at 20mm from the plate leading edge.

(a) Rykov model with
variable Zr eq. (33)

(b) ES model with
θ=1/3.02 and ν=−0.50

Figure 2: Dimensional rotational and translational temperature profiles at x = 5mm from
the flat plate leading edge. DSMC and experimental results from [22].

(a) Rykov model with
variable Zr eq. (33)

(b) ES model with
θ=1/3.02 and ν=−0.50

Figure 3: Dimensional rotational and translational temperature profiles at x = 20mm
from the flat plate leading edge. DSMC and experimental results from [22].
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5 THE BGK-NS METHOD AND THE UNIFIED GAS-KINETIC SCHEME

Among the gas-kinetic schemes a successful approach is represented by the BGK-NS
method, [26, 27]. The basic idea of the BGK-NS scheme is the following. Integrating
in time the non-dimensional BGK equation [6] for a one-dimensional flow in a control
volume dx with a continuous particle velocity cx and discretised space xi and time tn one
obtains

F |n+1
i = F |ni + 1

∆x

tn+1
∫

tn

(

[cxF ]|i−1/2 − [cxF ]|i+1/2

)

dt+ ∆t
2

(

FM |n+1

i −F |n+1

i

τn+1 +
FM |ni −F |ni

τn

)

,

(6)
where the trapezoidal rule has been employed for the collision term integral and [cxF ]|i∓1/2

are the fluxes of the distribution function across the cell interface. Then, taking the
moments Ψ̂ = (1, cx, c2)T of equation (6), the update of the conservative variables can
be found as

Wn+1
i = Wn

i + 1
∆x

tn+1
∫

tn

+∞
∫

−∞

Ψ̂
(

[cxF ]|i−1/2 − [cxF ]|i+1/2

)

dcdt (7)

due to the compatibility conditions for the BGK model

+∞
∫

−∞

Ψ̂
FM |n−F |n

τn
dc = (0, 0, 0, 0)T . (8)

It is known that the BGK model recovers the incorrect Prandtl number in the continuum
limit and for this reason a simple correction consists in scaling the energy numerical flux, as
proposed in [26]. To finally obtain the BGK-NS scheme, a time-dependent gas distribution
function at the cell interfaces needs to be reconstructed in order to evaluate the numerical
fluxes. The latter approach has been applied in [28, 29] to a multi-temperature BGK
model where a multi-temperature intermediate equilibrium state, Feq, is introduced and
the same assumption that the fraction of collisions exciting the rotational degrees of
freedom is a given constant or a function of the flow temperatures is considered as in the
Rykov model. In this case only mass, momentum and total energy are conserved during
a particle collision

+∞
∫

−∞

Ψ̂
(

Feq |n−F |n

τn
+ FM |n−Feq |n

Zrτn

)

dc = (0, 0, 0, 0)T + (0, 0, 0, s)T (9)

then, the update of the macroscopic variables results

Wn+1
i = Wn

i + 1
∆x

tn+1
∫

tn

+∞
∫

−∞

Ψ̂
(

[cxF ]|i−1/2 − [cxF ]|i+1/2

)

dcdt+ ∆t
2

(

Sn+1
i + Sn

i

)

(10)

with the source terms S modelled through the Landau-Teller-Jeanes-type relaxation model,
[29]. In [14] and [30] the BGK-NS method has been successfully employed with the
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Shakhov kinetic model, [7], and improved, resulting in the Unified Gas Kinetic Scheme
(UGKS), by considering a discrete integration method in the phase space with cx|m the
mth discrete velocity. Then, equation (7) in the UGKS becomes

Wn+1
i = Wn

i +
1

∆x

∑

m

tn+1
∫

tn

Ψ̂
(

[cx|mF ]|i−1/2 − [cx|mF ]|i+1/2

)

dt (11)

where the aforementioned Prandtl correction is not anymore needed, with F reconstructed
on the basis of the equilibrium distribution function of the Shakov model. Recently, in
[15], a UGKS for diatomic gas flow has been developed employing the Rykov model, (1).
Also in this case, as for the modified BGK model discussed above, a source term, that
needs to be determined, arises in the update of the macroscopic variables

Wn+1
i = Wn

i + 1
∆x

∑

m

tn+1
∫

tn
Ψ̂0

(

[cx|mF0]|i−1/2 − [cx|mF0]|i+1/2

)

dt+

+ 1
∆x

∑

m

tn+1
∫

tn
Ψ̂1

(

[cx|mF1]|i−1/2 − [cx|mF1]|i+1/2

)

dt+ ∆t
2

(

Sn+1
i + Sn

i

)

(12)

where Ψ̂0 = (1, cx, c2, 0)T and Ψ̂1 = (0, 0, 1, 1)T . The method is not complete till a
procedure to reconstruct a time-dependent gas distribution function at the cell interfaces
is defined. In [26, 27, 30, 14, 15] the following general solution of the kinetic model
equation, under the assumption of a locally constant collision time, has been employed
with the BGK, Shakhov and Rykov models

F (xi+1/2, t, cx|m) = 1
τ

t
∫

tn
Feq(t

′, cx|m , xi+1/2 − cx|m(t− t′)) exp
(

− t−t′

τ

)

dt′+

+exp
(

− t
τ

)

F 0(tn, c|m, xi+1/2 − cx|m(t− tn)).

(13)

The kinetic model equilibrium distribution function Feq and the initial distribution func-
tion F 0 are expressed as Taylor expansions with coefficients that can be determined con-
sidering the macroscopic variables relations, as example equations (36) for the Rykov
model, and the relative compatibility conditions, equations (8) or (9). A different ap-
proach has been followed for the multi-temperature BGK model in [28, 29], where the
following time dependant distribution function has been used

F = Feq − τ ∗
(

∂Feq

∂t
+ c

∂Feq

∂x

)

+ t∂Feq

∂t
. (14)

The latter is based on the Chapman-Enskog expansion where the collision time is replaced
by a generalised one which depends on not only the local macroscopic variables, but also
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their gradients, and is obtained in order to have the kinetic equation satisfied. Indeed,
substituting equation (14) in the extended BGK model [28, 29] it is possible to obtain

τ ∗ = τ
1+τ(D2Feq/DFeq)

(15)

where
D = ∂

∂t
+ c ∂

∂x
; D2 = ∂D

∂t
+ c∂D

∂x
(16)

In [28, 29], the derivative of the equilibrium distribution function are then expressed as
Taylor expansions with the coefficients that can be obtained by means of the macroscopic
variables formulas. The time derivatives of the macroscopic variables are defined in terms
of the spatial derivatives thanks to the compatibility conditions. The latter approach is
simpler than the former, but, being based on the Chapman-Enskog solution of the kinetic
model, is, strictly speaking, valid only for small perturbances from the equilibrium.

6 GAS-KINETIC SCHEME FOR NEAR-CONTINUUM DIATOMIC FLOWS

BASED ON THE RYKOV MODEL

In order to extend the domain of validity of the continuum formulation of the solver
employed in the present work, we propose a Gas-Kinetic Scheme based on the Chapman-
Enskog expansion for the Rykov model (section 2). This approach, due to the use of the
Chapman-Enskog expansions, is limited to near-continuum regions but is simpler than
the UGKS for diatomic gases presented in [15]. For this reason it fits our object of ex-
tending the continuum formulation without drastically increasing its computational cost.
Integrating in time the non-dimensional reduced Rykov model system (1), as example for
a one-dimensional flow problem, it is possible to obtain the following equations for the
update of the distributions functions

F0|n+1
i = F0|ni + 1

∆x

tn+1
∫

tn

(

[cx|mF0]i−1/2 − [cx|mF0]i+1/2

)

dt+ ∆t
2

(

F eq
0

|n+1−F0|n+1

τn+1 +
F eq
0

|n−F0|n

τn

)

F1|n+1
i = F1|ni + 1

∆x

tn+1
∫

tn

(

[cx|mF1]i−1/2 − [cx|mF1]i+1/2

)

dt+ ∆t
2

(

F eq
1

|n+1−F1|n+1

τn+1 +
F eq
1

|n−F1|n

τn

)

with
F eq
0 = 1

Zr
F r
0 +

(

1− 1
Zr

)

F t
0 ; F eq

1 = 1
Zr
F r
1 +

(

1− 1
Zr

)

F t
1. (17)

Taking the moments Ψ̂0 = (1, cx, c
2, 0)T of F0 and Ψ̂1 = (0, 0, 1, 1)T of F1 the updated

non-dimensional macroscopic variables are given by equation (12) where the source term,
as discussed in appendix F, is

∆t

2

(

Sn+1
i + Sn

i

)

=
∆t

2

(

0, 0, 0,
ρ(T |n+1

i − Tr|n+1
i )

Zrτ
n+1
i

+
ρ(T |ni − Tr|ni )

Zrτni

)T

. (18)
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Here we propose to reconstruct the time dependant distribution functions at the inter-
cells, i.e. F0|i±1/2 and F1|i±1/2, based on the Chapman-Enskog expansions around F eq

0 and
F eq
1 given by equations (17)

F0 = F eq
0 − τ

(

∂F eq
0

∂t
+ cx

∂F eq
0

∂x

)

+ t
∂F eq

0

∂t
; F1 = F eq

1 − τ
(

∂F eq
1

∂t
+ cx

∂F eq
1

∂x

)

+ t
∂F eq

1

∂t
(19)

without employing a generalised collision time. Moreover, instead of employing Taylor
expansions, we intend to proceed analytically and obtain the derivatives of the equilibrium
distribution functions in terms of the macroscopic variables and their derivatives. These
can then be evaluated at the interface knowing the values at the cells centres. Thus,
deriving equations (17) we obtain

∂F eq
0

∂α
= 1

Zr

∂F r
0

∂α
+
(

1− 1
Zr

)

∂F t
0

∂α
;

∂F eq
1

∂α
= 1

Zr

∂F r
1

∂α
+
(

1− 1
Zr

)

∂F t
1

∂α
(20)

where α = x, t. The derivatives of F r
0 , F

t
0, F

r
1 and F t

1 can be written as follows

∂F r
0

∂α
= F r

0

(

1
FM (T )

∂FM (T )
∂α

+ ω0

φ0(T )
∂φ0(T )

∂α

)

∂F t
0

∂α
= F t

0

(

1
FM (Tt)

∂FM (Tt)
∂α

+ 1
φ0(Tt)

∂φ0(Tt)
∂α

)

∂F r
1

∂α
= F r

1

[

1
T

∂T
∂α

+ 1
FM (T )

∂FM (T )
∂α

+ 1
1+ω0φ0(T )+ω1φ1(T )

(

ω0
∂φ0(T )

∂α
+ ω1

∂φ1(T )
∂α

)]

∂F t
1

∂α
= F t

1

[

1
Tr

∂Tr

∂α
+ 1

FM (Tt)
∂FM (Tt)

∂α
+ 1

1+φ0(Tt)+φ1(Tr)

(

∂φ0(Tt)
∂α

+ ∂φ1(Tt,Tr)
∂α

)]

(21)

with the introduction of the following notation

φ0(T ) =
8
15

qtxc
′
x

ρT 2

(

c′2

T
− 5

2

)

; φ1(T1, T2) = 4(1− δ) qrxc
′
x

ρT1T2
(22)

where the ideal gas law has been used. The derivative of the Maxwellian, FM , and the
Rykov model corrections, φ0 and φ1, can be found in appendix G. In order to remove
the time derivatives we remember that the time and space derivative of the macroscopic
variables can be linked by means of the compatibility condition for the currently employed
Chapman-Enskog expansion

+∞
∫

−∞

[

Ψ̂0

(

∂F eq
0

∂t
+ cx

∂F eq
0

∂x

)

+ Ψ̂1

(

∂F eq
1

∂t
+ cx

∂F eq
1

∂x

)]

dc = S (23)

Thus, we obtain

∂W
∂t

= S−
+∞
∫

−∞

(

Ψ̂0cx
∂F eq

0

∂x
+ Ψ̂1cx

∂F eq
1

∂x

)

dc (24)
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which, as explained in appendix H, leads to

∂W
∂t

= S− ∂Q
∂x

(25)

where

Q =



























ρux

1
2
ρ
(

Tt +
T−Tt

Zr

)

+ ρu2
x

3
2
ρ
(

Tt +
T−Tt

Zr

)

ux + ρu3
x +

2
3
Zr+ω0−1

Zr
qtx + ρ

(

Tr +
T−Tr

Zr

)

ux + 2(1− δ)Zr+ω1−1
Zr

qrx

ρ
(

Tr +
T−Tr

Zr

)

ux + 2(1− δ)Zr+ω1−1
Zr

qrx



























(26)
Regarding the heat fluxes time derivatives, needed for the derivatives of the Rykov cor-
rections (22); multiplying the first and the second equations of the Rykov model (1) by
c′xc

′2/2 and c′x, respectively, and integrating, the following expressions can be obtained
as discussed in appendix H

∂qtx
∂t

=
(

ω0−1
3Zr

− 2
3

)

qtx
τ

; ∂qrx
∂t

=
(

(1− δ)ω1−1
Zr

− δ
)

qrx
τ

(27)

7 CONCLUSIONS AND FUTURE WORKS

In the first part of the paper the Rykov and the Ellipsoidal-Statistical kinetic models
for diatomic gases have been evaluated with respect to experimental and DSMC results,
showing that both models are reliable to simulate high Mach flows with rotational degrees
of freedom. However, the Rykov model leads to slightly better predictions when compared
to the ES model, mainly due to the temperature dependant collision number. In the
second part of the work the Rykov model has been employed to formulate a Gas Kinetic
Scheme for near continuum flow simulations. The scheme will be employed in future works
in hybrid methods in order to reduce the computational domain where the expensive
discrete velocity methods for kinetic Boltzmann equations are needed.

A THE NON-DIMENSIONAL VARIABLES

To obtain a non-dimensional form of this kinetic model, we define the following dimen-
sionless quantities

ρ = ρ̂/ρ∞ ; T = T̂ /T∞ ; u = ĉ/
√
2RT∞

t = t̂/(µ∞p−1
∞ ) ; x = x̂/

(√
2RT∞µ∞p−1

∞

)

; p = p̂/(ρ∞RT∞)

µ = µ̂/µ∞ ; q = q̂/
(

ρ∞(2RT∞)3/2
)

; τ = ν̂/(µ∞p−1
∞ )

(28)
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where the dimensional variables are denoted with a hat and c∞ =
√
2RT∞ represents the

most probable molecular velocity magnitude at equilibrium at the reference temperature
T∞. Then, the non-dimensional distribution functions are

F0 = F̂0/
(

ρ∞(2RT∞)−3/2
)

; F1 = F̂1/
(

mRT∞ρ∞(2RT∞)−3/2
)

. (29)

B THE PARTICLE COLLISION NUMBER Zr

In a system of colliding particles, energy is transferred between the various internal
modes. These collisions tend to drive the internal energy distributions towards their
respective equilibrium state and the number of them necessary to push a particular mode
to the equilibrium is the collision number, Z, associated to that mode, [31]. It is well
known that generally

Ztranslation < Zrotation < Zvibration (30)

therefore, the number of collisions required for the vibrational mode to reach the equi-
librium is greater than the one required for the rotational energy which in turn is higher
than the one associated with the translational mode. This implies that the time required
for the different modes to relax towards the equilibrium state is different. Indeed, if we
define the collision times τt,r,v as usual in the literature

τt,r,v = Zt,r,vτ (31)

where τ is the mean time between collisions, from relation (30) it is immediate to find
that

τtranslation < τrotation < τvibration. (32)

We will focus now on the rotational degrees of freedom. Considering the rotational col-
lision number as a constant over the entire flow field, any temperature dependence is
neglected and this is in direct contrast with the theoretical results of [32] and [33]. For
this reason, several works provide an expression of ZR as a function of the temperature
in the flow field. Probably the first attempt to appear in the literature is the theoret-
ical work in [32], where, employing an empirical non impulsive model and by assuming
a zero initial energy in the rotational mode, the following approximate expression in the
continuum limit is obtained

Zr =
(Zr)∞

1+(π3/2/2)(T ∗/T )1/2+(π2/4+π)(T ∗/T )
(33)

where T∗ = 91.5K is the characteristic temperature of the intermolecular potential and
(ZR)∞ = 23.5 is the limiting value. While Parker’s expression, (33), is derived involving
a large number of simplifying assumption the overall dependence on the temperature
is in agreement with the more rigorous treatment of [33]. However, this expression,
being derived in the continuum regime, does not involve any dependence on the different
translational and rotational temperatures. Thus, in the recent literature, formulas derived
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from data fitting, either from numerical or experimental results, have been employed.
Among them an expressions for ZR(Tt, Tr) derived from molecular dynamics simulations
can be found in [21]. The latter is written as

Zr =
[

a1
(

Tt

1K

)1/4
+ a2

(

Tt

1K

)−1/4 − a3
(

Tt

1K
− 1000

)

] [

1− b
(

1− Tr

Tt

)]

(34)

where a1 = 1.33868, a2 = −6.19992, a3 = −0.00107942 and 0 < b ≤ 1.

C THE VISCOSITY LAW

For the viscosity variations the power law has been adopted

µ = µref

(

T
Tref

)ω

(35)

with an exponential factor of 0.72 or 0.81. For Nitrogen, a power law with an exponential
ω = 0.81 represents better viscosity variations at low temperatures, while ω = 0.72 is
more suitable at high temperatures.

D THE NON-DIMENSIONAL MACROSCOPIC VARIABLES FOR THE

RYKOV MODEL

The non-dimensional macroscopic quantities can be obtained from the distribution
functions F0 and F1 of system (1) employing the following formulas

ρ =
+∞
∫

−∞

F0dc ; ρui =
+∞
∫

−∞

ciF0dc ; 3
2
ρTt + ρ(u2

x + u2
y + u2

z) =
+∞
∫

−∞

c2F0dc

ρTr =
+∞
∫

−∞

F1dc ; 5
2
T = 3

2
Tt + Tr ; pt = ρTt ; p = ρT

qti =
+∞
∫

−∞

c′i
c′2

2
F0dc ; qri =

+∞
∫

−∞

c′i
2
F1dc.

(36)

E THE NON-DIMENSIONAL MACROSCOPIC VARIABLES FOR THE

ES MODEL

We then find for the equivalent continuum density, velocity and energy,

ρ =
∞
∫

−∞

F0dc ; ρui =
∞
∫

−∞

ciF0dc ; 3
2
ρTt + ρ(u2

x + u2
y + u2

z) =
+∞
∫

−∞

c2F0dc

5
2
T = 3

2
Tt + Tr ; ρTr =

∞
∫

−∞

F1dc.

(37)
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The pressure is assumed to depend on the equilibrium temperature T , and furthermore
a relaxation temperature is introduced to represent the thermodynamic non-equilibrium
between the translational and internal degrees of freedom,

p = ρT ; Trel = θT + (1− θ)Trot. (38)

F THE MOMENTS OF THE RYKOV MODEL COLLISION TERM

With Ψ̂0 = (1, cx, c2, 0)T and Ψ̂1 = (0, 0, 1, 1)T the moments of the Rykov model
collision term result

+∞
∫

−∞

[

Ψ̂0

(

F t
0
−F0

τ
+

F r
0
−F t

0

τ

)

+ Ψ̂1

(

F t
1
−F1

τ
+

F r
1
−F t

1

τ

)]

dc =





















0

0

0

ρ(T−Tr)
Zrτ





















. (39)

Indeed

+∞
∫

−∞

Ψ̂0
F t
0
−F0

τ
= (0, 0, 0, 0)T ;

+∞
∫

−∞

Ψ̂0
F r
0
−F t

0

τ
=

(

0, 0, 3
2
ρ(T−Tt)

Zrτ
, 0

)T

(40)

and

+∞
∫

−∞

Ψ̂1
F t
1
−F1

τ
= (0, 0, 0, 0)T ;

+∞
∫

−∞

Ψ̂1
F r
1
−F t

1

τ
=

(

0, 0, ρ(T−Tr)
Zrτ

, ρ(T−Tr)
Zrτ

)T

(41)

from which, remembering the link between T , Tt and Tr defined in equations (36), it is
straightforward to find equations (39)

G MAXWELLIAN AND RYKOV CORRECTIONS DERIVATIVES

For the derivative of the Maxwellian we have

∂FM (T )
∂α

= FM(T )
[

1
ρ
∂ρ
∂α

+
(

c′2

T
− 3

2

)

∂T
∂α

+ 2 c′x
T

∂ux

∂α

]

(42)

while the derivatives of φ0 and φ1 in equation (21) result

∂φ0(T )
∂α

= φ0(T )
(

1
qtx

∂qtx
∂α

− 1
c′x

∂ux

∂α
− 1

ρ
∂ρ
∂α

− 2 1
T

∂T
∂α

)

− φ0(T )
c′2

T
− 5

2

(

2 c′x
T

∂ux

∂α
+ c′2

T 2

∂T
∂α

)

∂φ1(T1,T2)
∂α

= φ1(T )
(

1
qrx

∂qrx
∂α

− 1
c′x

∂ux

∂α
− 1

ρ
∂ρ
∂α

− 1
T1

∂T1

∂α
− 1

T2

∂T2

∂α

)

(43)

where the ideal gas law has been used.
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H THE MACROSCOPIC VARIABLES TIME-DERIVATIVE FOR THE GAS-

KINETIC SCHEME

From equation (21) follows that

∂W
∂t

= S− ∂
∂x

+∞
∫

−∞

(

Ψ̂0cxF
eq
0 + Ψ̂1cxF

eq
1

)

dc. (44)

Considering equations (20)

+∞
∫

−∞

(

Ψ̂0cxF
eq
0 + Ψ̂1cxF

eq
1

)

dc = 1
Zr

+∞
∫

−∞

Ψ̂0cxF
r
0 dc+

(

1− 1
Zr

) +∞
∫

−∞

Ψ̂0cxF
t
0dc+

+ 1
Zr

+∞
∫

−∞

Ψ̂1cxF
r
1 dc+

(

1− 1
Zr

) +∞
∫

−∞

Ψ̂1cxF
t
1dc

(45)

with
+∞
∫

−∞

Ψ̂0cxF
r
0 dc =

(

ρux,
1
2
ρT + ρu2

x,
3
2
ρTux + ρu3

x +
2
3
ω0q

t
x, 0

)T

+∞
∫

−∞

Ψ̂0cxF
t
0dc =

(

ρux,
1
2
ρTt + ρu2

x,
3
2
ρTtux + ρu3

x +
2
3
qtx, 0

)T

+∞
∫

−∞

Ψ̂1cxF
r
1 dc = (0, 0, ρTux + 2ω1(1− δ)qrx, ρTux + 2ω1(1− δ)qrx)

T

+∞
∫

−∞

Ψ̂1cxF
r
1 dc = (0, 0, ρTrux + 2(1− δ)qrx, ρTrux + 2(1− δ)qrx)

T

(46)

equations (25) can be closed. Finally, obtaining equations (27) is straightforward consid-
ering definitions (17), the macroscopic relations (36) and the following integrals

+∞
∫

−∞

c′x
c′2

2
F r
0 dc = ω0

3
qtx ;

+∞
∫

−∞

c′x
c′2

2
F t
0dc = 1

3
qtx

+∞
∫

−∞

c′xF
r
1 dc = ω1(1− δ)qrx ;

+∞
∫

−∞

c′xF
t
1dc = (1− δ)qrx

(47)
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