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Abstract. The proposed method naturally merges the desirable conservative properties
and intuitive physical formulation of the widely used finite-volume (FV) technique, with
the capability of local arbitrary high-order accuracy and high-resolution which is distinc-
tive in the discontinuous finite-element (FE) framework. This relatively novel scheme,
the discontinuous hybrid control-volume/finite-element method (DCVFEM), has been al-
ready applied to the solution of advection-diffusion problems and shallow-water equations,
and is in this paper extended to the Euler equations in the one-dimensional case. The
main features are summarized and the scheme is compared to the well established FV
and discontinuous Galerkin (DG) methods.

1 INTRODUCTION

In the framework of computational fluid dynamics (CFD) in engineering applications,
low-order methods have been typically considered as the right choice due to their sim-
plicity, robustness, and their effectiveness in providing a reasonably accurate solution by
comparably low computational cost. Indeed the majority of the production and com-
mercial codes are first or second order accurate. However, during the past two decades
the interest in high order methods has grown not only among the research community,
but also in the field of engineering, especially in certain applications where the complex
flow structure and small length scales need to be adequately resolved. For instance, in
wave propagation problems and in vortex dominated flows, the use of low-order methods
may result in unacceptable solutions. In response to this trend, some high order algo-
rithms have been proposed, such as tetrahedral hp finite elements [1], the spectral volume
method [2], or the spectral method for the shallow water equations [3]. High order or
spectral methods are usually referred to as methods of cubic convergence and above [4],
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distinguishing from low-order methods, of the first and second order of convergence. Re-
maining in the field of CFD, the finite volume (FV), or control volume (CV), method is
one of the most widely used techniques. Among the attractive features of the CV ap-
proach are quoted the excellent numerical conservation properties, the intuitive physical
formulation and the relatively easy implementation.

Following the above considerations, in the present work is proposed an algorithm which
incorporates the desirable physics-conserving properties of the CV method with the ca-
pability of arbitrary straightforward high order accuracy distinctive of the discontinuous
finite-element (FE) approach, resulting in the hybrid discontinuous control-volume/finite-
element method (DCVFEM hereafter). The formal derivation of the method has been
provided in Stipcich et al. [5], along with a Fourier analysis in the one-dimensional case
and convergence tests for the one- and two-dimensional cases for advection-diffusion prob-
lems.

Historically, the idea of combining the CV and FE method (CVFEM) arises from the
instance of merging the inherent local numerical conservation property of the control
volume method with the geometrical flexibility of the finite element method, resulting
in the category of schemes also known as vertex- or node-based finite volume methods.
The CVFEM can be seen as a finite-element method in which volume indicator distri-
butions are used as weight functions [6]. The method has been developed originally by
Baliga and Patankar [7] for advection-diffusion problems on triangular elements, where
the integral conservation equations are enforced on polygonal control volumes constructed
around each node of the mesh. The Poisson equation has been solved using quadrilateral
elements [8] and successively advection-diffusion problems have been tackled [9]. The
CVFEM has been further extended to incompressible flow using bilinear, quadrilateral
elements and tetrahedral elements [10–13]. Aa detailed analysis of consistent and lumped
versions of the CVFEM algorithm for diffusion-type problems has been carried out Ba-
naszek [14], investigating the properties of bilinear, quadrilateral elements, nine-node (La-
grange) quadrilateral elements, eight-node Serendipity elements and six-node triangular
elements. Some of the positive characteristics of the CVFEM approach are pointed out:
local conservation is achieved at control volume level and the discrete maximum principle
[15] is preserved. A high order CVFEM for unstructured grids was proposed by Piller
and Stalio [16] for advection-diffusion problems, featuring a quadrature-free approach on
quadrilateral elements. It is shown that an appropriate distribution of interpolation points
and control-volume edges leads to a well conditioned matrix.

Discontinuous methods have been developed at first in the finite-element framework.
The resulting discontinuous Galerkin methods (DGFEM), as opposed to the continuous
Galerkin approach (GFEM), are characterized by the relaxation of the continuity con-
straint between neighboring elements, which is imposed in weak form through the so
called numerical fluxes or numerical traces [17, 18]. The specific formulation of numerical
fluxes strongly affects the consistency, stability and accuracy of the method [17]. The
discontinuous philosophy has been applied within the CVFEM framework [3, 19], giv-

2



A. Ramezani and G. Stipcich

ing rise to discontinuous control volume/finite element methods. Research in this area
has been mainly focused on hyperbolic problems [3, 19]. Iskandarani et al. [19] provide
a thorough comparison of spectral GFEM, Taylor-Galerkin Least Square finite elements
(TGLS), DGFEM and DCVFEM for the linear advection equation, using quadrilateral
elements with interpolating polynomials of degree four to nine. The interpolation points
within each element, in transformed space, are located at N Gauss-Legendre quadrature
nodes while the control-volume edges lie on N + 1 Gauss-Lobatto-Legendre quadrature
nodes.

The present work provides the extension of the spectral DCVFEM to the solution of the
Euler equations in the one-dimensional case. The method is presented in its main features,
and numerical experiments are conducted to verify the expected improved stability and
accuracy in shock-capturing. The solution is compared to the well established DGFEM
and FV method.

2 NUMERICAL APPROXIMATION

2.1 Governing equations

Although in the present work the one-dimensional case is considered, the mathematical
derivation of the DCVFEM is presented in a general framework. The Euler equations in
vector and conservative form read as

∂U

∂t
+

∂Fi

∂xi

= 0 (1)

where the index i = 1, 2, 3 stays for the spatial dimensions of the problem, xi = {x, y z}
denotes the spatial coordinates, U stands for the array of the conservative variables and
Fi = {Fx, Fy,Fz} are the vectors of flux quantities. In the one-dimensional case we have

U = (ρ, ρu, Et)
T Fx =

(
ρu, ρu2 + p, u (Et + p)

)T
(2)

where t ∈ [0, τ ] represents time, ρ denotes the density, u the velocity, p is the pressure
and Et is the total energy per unit volume. System (1) is closed by the ideal gas law and
complemented by suitable initial and boundary conditions.

2.2 Weak formulation

Considering a discretization (mesh) Th of Ω into elements e, the discontinuous approx-
imate solution can be defined as in [17]. The conservation equations (1) are multiplied by
a test function φ and for each element e it is imposed the following

∫

e

∂U

∂t
φ dx−

∫

e

Fi · ∇φ dx+

∫

∂e

F̂i · neφ ds = 0 (3)

where x ∈ Ω is the position vector in the domain Ω, ne is the outward-pointing normal
unit vector to the element and F̂i is the appropriate numerical flux, numerical trace,
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or Riemann solver. The definition of numerical traces is crucial, since it affects the
consistency, stability and accuracy of the resulting discontinuous method [17].

The mesh Th is further subdivided into control volumes V , entirely contained in the
respective element (see Figure 1). The weight function φ in (3) is chosen to be the volume
indicator distribution, defined as

φ ≡ φV (x) =

{
1 if x ∈ V

0 otherwise
(4)

The weak formulation (3) then yields

∫

V

∂U

∂t
dx+

∫

∂V

F−

i · n ds = 0 (5)

where n denotes the outward-pointing normal unit vector to ∂V . By F−

i is denoted the
trace on ∂V of the restriction of the flux quantities vectors Fi to the volume V .

2.3 Coupling conditions: numerical fluxes

The surface integral appearing in (5) accounts for two different configurations for a
control volume, according its intersection with the element’s boundary ∂e being empty or
not. The surface integral in (5) is calculated as

∫

∂V

F−

i · n ds =

(∫

∂V ∩ e̊

Fi · n ds+

∫

∂V ∩ ∂e

F̂i · n ds

)
(6)

that is, on the faces of the control volume V that lay in the interior of the element e̊ the
exact value of the flux quantities is used, whereas a suitably-defined numerical trace F̂i

is used for the faces laying on the boundary of the element ∂e. In the present work, a
standard Roe’s scheme [20] is enforced

F̂i = {Fi} −
1

2
JAKJŨK (7)

where A denotes the flux Jacobians, and the operators {·} and J·K are the inter-element
average and jump:

{Fi} ≡
1

2

(
F+

i + F−

i

)
JAK ≡ A− −A+ JŨK ≡ Ũ− − Ũ+ (8)

The above flux formulation (7, 8) must be limited to avoid destructive numerical oscilla-
tions near shocks. In the present work, the generalized slope limiter is used [17].
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2.4 Finite dimensional subspace and basis functions

The unknowns U (x, t) are approximated by element-based polynomial expansions [18].
The numerical approximations Uh (x, t) are chosen in the same finite-dimensional sub-
space of H

1 (Ω) [21], spanned by a basis of piecewise polynomials Lj, defined in the
transformed reference space [−1, 1]d, which do not respect inter-element continuity. The
choice U, Fi ∈ H

1 (V ) guarantees the existence of the integrals on V appearing in the
weak formulation (5) [5]. In addition, a trace theorem asserts that a function in H

1(V )
has a L

2(∂V ) trace [21, th. 1.3.1 ch. 1], assuring the existence of the boundary integrals
appearing in (5).

In the present work, the Lagrange coefficients are chosen as piecewise (interpolatory)
polynomials. For example, the restriction Ue

h of Uh to the element e is given by

Ue
h ≡

P e+1∑

k=1

Lk U
e
k (9)

where {Ue
k}

P e+1
k=1 in the set of nodal values of Uh in the element e and P e denotes the

polynomial order of the element. In principle, the interpolation nodes may be located
everywhere inside an element, and in the present study the equally spaced placement is
chosen.

2.5 Space discretization: subdivision into control volumes

Every element e ∈ Th is further subdivided into control volumes V entirely contained
in the element, i.e V ⊂ e. The subdivision into control volumes is a dual partition with
respect to the original given discretization Th. This type of h-refinement [22] results
in an increase of local resolution in the element e. In principle, any subdivision into
control volumes V can be formed. In the present work, the equally spaced partition into
control volumes is chosen. In Figure 1 is reported the sketch of the proposed subdivision
for elements of order P e = 1, 2. The procedure is general and straightforward for any
polynomial order. For higher dimensions, the tensor product of the one-dimensional
element can be used.

3 NUMERICAL EXPERIMENTS

The Euler equations are solved for a selected one-dimensional test case by the proposed
DCVFEM and compared with the finite-volume (FV) and discontinuous Galerkin (DG)
solutions.
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(a) (b)

Figure 1: Sketch of the subdivision into control volumes V for a one-dimensional element e of polynomial
order (a) P e = 1 and (b) P e = 2. The control volumes are entirely contained inside an element and the
faces (represented by vertical solid color lines, black for external and gray for internal faces) are equally
spaced.

3.1 Sod’s shock-tube problem

The shock-capturing capability of the DCVFEM is tested by the Sod shock-tube prob-
lem [23]. Equations (1, 2) are coupled with the following initial conditions

(ρ, u, p) =

{
(1, 0, 1) t = 0, x ≤ 0.5

(0.125, 0, 0.1) t = 0, x > 0.5
(10)

on the domain x ∈ Ω = [0, 1]. The results for the density distribution are shown in Figure
2 (a), (b), (c) for different polynomial orders of accuracy P e = 1, 2, 3, respectively. For
the sake of comparison, the problem is also solved by the discontinuous Galerkin method
(DG) using exactly the above described formulation for the inter-elements coupling and
flux limiter (see Section 2.3). The solution is compared with the finite-volume (FV)
method of second order accuracy for the case P e = 1, since in this case the accuracy of
the DCVFEM and DG are expected to be of second order as well. For the FV solution
the symmetric minmod [24] flux limiter is used. All the presented simulations are run
on a coarse mesh of 100 elements and by a fourth order Runge-Kutta time quadrature
scheme. The chosen reference solution is the one obtained by the FV scheme on a very
fine mesh of 10 000 elements, labeled as FVRef in the legend.

The following considerations are made:

• Figure 2 (a) shows the density distribution solution of second order accuracy (i.e.
using polynomials of order P e = 1 in DCVFEM and DG schemes) comparing the
proposed DCVFEM with the DG and FV results on the same coarse mesh of 100 ele-
ments; it is observed that both the DCVFEM and DG exhibit better discontinuity-
capturing capability and less dissipative behavior with respect to the FV in the
expansion wave, in the contact discontinuity and in the shock; a certain amount of
non-physical oscillations are observed in the DG solution in all discontinuity types,
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while some modest overshooting is exhibited by the DCVFEM in the expansion
wave.

• Figure 2 (b) shows the density distribution solution of third order accuracy, i.e. us-
ing polynomials of order P e = 2 by DCVFEM and DG schemes, on the same coarse
mesh of 100 elements; both schemes exhibit a comparable discontinuity-capturing
capability in the rarefaction wave, contact discontinuity and in the shock; however,
the DCVFEM solution is free from visible numerical oscillations and overshooting,
while the DG solution is affected by rather severe oscillations near the discontinu-
ities.

• Figure 2 (c) shows the density distribution solution of fourth order accuracy, i.e.
using polynomials of order P e = 3 by DCVFEM (the DG scheme is not converging
in this case) on the coarse mesh of 100 elements; the solution by the proposed
DCVFEM exhibits an overall better shock-capturing capability, as expected when
using a higher-order accuracy; no visible numerical oscillations are observed, except
some modest overshooting in the expansion wave.
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(a) Second order accuracy solution (i.e. polynomial order P e = 1)

Figure 2: Density distribution for the shock-tube problem (10) on a coarse mesh of 100 elements for (a)
P

e = 1, (b) P e = 2 and (c) P e = 3.
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(b) Third order accuracy solution (i.e. polynomial order P e = 2)
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(c) Fourth order accuracy solution (i.e. polynomial order P e = 3)
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4 CONCLUSIONS

The high-order discontinuous hybrid control-volume/finite-element method (DCVFEM)
has been successfully applied to the solution of the Euler equations in the one-dimensional
case. The derivation for the general multi-dimensional case has been reported and the
main features of the proposed scheme have been described. The DCVFEM solution
of the shock-tube test case has been compared with the well established discontinuous
Galerkin (DG) scheme by using the same inter-element coupling formulation and flux
limiter, and with the classical finite-volume (FV) method for the second order accuracy.
The DCVFEM solution appears to be more accurate and less dissipative than the FV,
and does not present visible unphysical oscillations which instead affect considerably the
DG solution. This desirable advantage of the DCVFEM is most likely related to the
weak formulation of the scheme, which is proven to be conservative at control volume
level [5], differently from the DG formulation, which features conservation at element
level. Nevertheless, the scheme is seen to be very sensitive to the particular choice of the
flux limiter formulation, which demands additional analysis and experimentation. The
numerical results reported in the present one-dimensional study are encouraging for the
further extension of the DCVFEM to the multidimensional case of the Euler equations.
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