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Abstract. Thin-walled member composed of fibre-reinforced polymer composite laminates 

that have one dimension relatively large in comparison to their cross-sectional dimensions are 

conventionally modelled by one dimensional beam-type finite elements. Due to the rigid cross 

section assumption in the formulation of this class of elements, only beam-axis-related 

deformations can be considered, including flexural, torsional and lateral buckling. However, 

local deformations such as local buckling of web and flanges, which might have significant 

effects on the global response of the member, are ignored. In order to model these types of 

deformations, shell-type elements are used throughout the domain of the member. While the 

former lacks accuracy in some cases, the latter creates oversized models that are 

computationally uneconomical. The purpose of the current study is to develop a finite element 

model to consider the local effects by a multi-scale overlapping decomposition method. In 

this method, beam-type elements are used as a basis for the whole domain of the member 

while shell-type elements are placed in critical regions only to incorporate the local effect on 

the global behaviour. Therefore, it allows considering the local deformations in the numerical 

analysis without using shell-type elements throughout the domain. Numerical examples are 

provided in which the results are compared to the full-shell-type model, indicating the 

efficiency and accuracy of the proposed technique.  

 
 

1 INTRODUCTION 

The use of fibre-reinforced polymer composite laminated plates as a construction material 

has increased in recent years. The main reasons of this increase are favourable properties that 

these types of material possess, namely, non-corrosive nature and prolonged durability, high 

tensile strength-to-weight ratio, electromagnetic neutrality and resistance to chemical attack. 

Their high strength-to-weight ratio allows fabrication of slender structural components, the 

spans of which are often large in comparison to their cross-sectional dimension. Therefore, 

beam-type finite elements are normally used for their analysis. A beam formulation was 

developed by Bauld & Tzeng [1] to capture flexural and lateral-torsional buckling behaviour 

mailto:emre.erkmen@uts.edu.au
mailto:ashkan.afnaniEsfandabadi@student.uts.edu.au


R. Emre Erkmen and Ashkan Afnani 

 

 2 

of thin-walled composite laminated members. Closed form analytical solutions for buckling 

analysis based on the beam-type formulation have been developed (e.g. [2-5]), the use of 

which is limited to simple loading and boundary conditions. On the other hand, finite element 

formulations [6-10] can be used to obtain flexural-torsional buckling behaviour of composite 

thin-walled members with general loading and boundary conditions. However, these types of 

elements are formulated by rigid cross-section assumption and consequently are not able to 

consider cross-sectional deformations such as the local buckling in web or flange and 

distortional buckling. Alternatively, should the cross-sectional deformations be of interest, 

one has to perform a more complicated shell-type analysis for the whole domain of the 

structure. 

Recent focus of research on computational mechanics has been on adaptive numerical 

methods such as mechfree methods (e.g. [11, 12]), Generalized finite element method (e.g. 

[13,14]) and Multi-scale methods [15-20], which allow the implementation of more accurate 

numerical models only at the regions of interest (i.e. where local deformations exist) while 

keeping the rest of the domain to be modelled by the simpler models. Particularly, the 

Bridging Multiscale Method (BMM), which was originally developed to enrich the nodal 

values of the FEM solution with meshfree solutions [21], provides a basis to couple problems 

based on two different physical assumptions (e.g. [22]). BMM allows the separation of the 

local analysis, which is based on comparatively sophisticated modelling assumptions, from 

the global analysis, in which rather simplistic assumptions are implemented.  

Thin-walled beam behaviour also give rise to multiple scales in the deformations with 

multiple scales due to the interaction of the local buckling (i.e. cross-sectional/local 

deformations) and the global buckling modes [23]. In order to capture local buckling 

behaviour, several methodologies have been utilized; namely finite strip formulations (e.g. 

[24]), the generalized beam theory (e.g. [25]), and shell-type elements (e.g. [26]). Recently, 

Erkmen [27] developed a numerical technique based on BMM to consider the effect of the 

local deformations on the global behaviour of the thin-walled structure. This method allows 

the use of different kinematic assumptions in the local and global model. Therefore, simple 

beam-type numerical models were used to evaluate the global behaviour, and more detailed 

shell-type models were used in the place of localized behaviour. In the present study, the 

application of the method is expanded for composite thin-walled members. In order to specify 

the efficiency and accuracy of the method, the results are compared to the beam and full shell-

type models. 

 

2 BEAM-TYPE ANALYSIS  

The beam-type analysis, which is used for the analysis of the whole domain, is based on 

classical thin-walled beam theory. The kinematic assumptions of the theory lead to a strain 

vector consisting of axial strain due to the bending, membrane and torsional actions, and shear 

strains resulting from torsion only. The strain components can be written in terms of 

displacements parallel to  ̅,  ̅ and  ̅ directions, i.e.  ̅( ̅)  ̅( ̅) and  ̅( ̅), respectively, the 

angle of twist of the cross-section  ̅ and their derivatives. The strain vector is decomposed 

into linear and nonlinear components, i.e.  ̅   ̅   ̅ . Each part can be obtained by 

multiplying the matrix of cross-sectional coordinates S  by linear and nonlinear vectors 
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including displacement components. 

T
0 0L L L L  ε Sχ  

(1) 

T
0 0N N N N  ε Sχ   

Where 
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(2) 

And 

T ' '' '' '' 0 'L w u v  χ  (3) 

while the nonlinear displacement vector can be considered as follows, based on Trahair 

[28] 

   T 2 2 2 2 2 2 2 21 1 1
' ' ' ' ' ' ' ' ' 0 ' 0

2 2 2
N x y x y x yu v a v a u a a v a u a                χ  

(4) 

In Eq. (2),  ̅ and  ̅ denote the coordinates of a point on the cross-section,  ̅ is the normal 

distance from the mid-surface and the sectorial coordinate  ̅  ∫   ̅  has been used, in 

which h is the normal distance to the tangent of the point on the section contour from the 

arbitrarily located pole with  ̅ and  ̅ coordinates (     ). 

A finite element is formulated by assuming linear interpolation for  ̅ and cubic 

interpolations for  ̅,  ̅ and  ̅. Based on the above mentioned assumptions, the variational 

formulation can be formed to obtain the equilibrium equation as 

Tδ δ d d δ 0
L A

A z   
Tε σ d f

 

(5) 

In Eq. (5),   is the cross-sectional area;   is the length of the beam and   ̅ is the external 

load vector. The stress expression can be obtained directly from the strains using the linear 

stress-strain relationship for an isotropic material. Consequently, the first variation of the 

strain vector can be written as 

δ δε SB d

 

(6) 

The incremental equilibrium equations can be obtained by subtracting the virtual work 

expressions at two neighbouring equilibrium states and then linearizing the result by omitting 

the second- and higher-order terms, i.e.  

 δ δ δ δ δ δ 0   T T
d K d d f

 

(7) 

Where K  is the stiffness matrix of the global beam model, i.e.  
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T T d d d
L A L

A z z   K B S ESB M  (8) 

in which T Tδ δ d
A

A  M d B S σ .   

2.1 Constitutive relations for the beam element 

It is assumed that perfect interlaminar bond exists between the layers. For a laminate 

composed of n orthotropic layers, the orientation of the local  ̅   ̅-plane with respect to the 

global  ̅ ̅-plane is determined by the angle about the  ̅-axis   between  ̅ and   ̅ (Figure 1(b)).  

 

 

(a) Thin-walled beam            (b) Fibre orientations          (c) Laminates across the thickness 

Figure 1: Thin-walled beam composed of fibre-reinforced laminates 

For the     layer, the stress-strain relationship can be written as [9-11] 
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 [9,11]. These coefficients can be found in [7-9, 29]. 

3 SHELL –TYPE ANALYSIS  

In order to capture the buckling behaviour of the thin-walled member, a four-node shell 

element with 6 degrees of freedom per node is adopted. In order to satisfy C
1
 continuity 

requirement of Kirchhoff plate theory and avoid shear locking effects, Discrete Kirchhoff 

Quadrilateral (Batoz & Tahar [30]) is chosen for the plate component, in which shear 
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deformations effects across the thickness is omitted. For the membrane component, the finite 

element of Ibrahimbegovic et al. [31] employing drilling degrees of freedom is adopted 

herein. Displacement degrees of freedom include bending rotations  ̂  and  ̂  in local     and 

   planes, drilling rotation  ̂  around   direction, deflections  ̂  and  ̂  of the mid-surface in 

local    plane, and the out of plane deflection  ̂  in local   direction (Fig. 2.a) 

 

(a) Local deflections of the shell element                      (b) Global vs. local coordinate system 

Figure 2: Deflections and coordinate systems of the shell formulations 

The out of plane deflection  ̂ is interpolated linearly while the standard bilinear 

interpolation is used for the independent drilling rotation  ̂ , and the Allman-type 

interpolation functions are used for the in-plane displacements  ̂  and  ̂  [31]. The 

equilibrium equations of the shell model is obtained in the variational form as 

T T ˆˆˆ ˆ ˆδ δ d d δ 0
L A

A z    ε σ d f  (10) 

 ̂ in Eq. (10) represents the strain vector, which can be composed of strains due to plate 

bending  ̂ , membrane action  ̂  , and strains due to second order membrane and plate 

bending action  ̂ , i.e. 
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b mm N  ε ε ε ε  (11) 

where the plate bending strains can be written as 
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(12) 

in which  ̂ is the curvature vector. The second term in Eq. (11) can be written as 
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(13) 

in which  ̂   is the vector of membrane strains and the last row in Eq. (13) contains the 

skew symmetric part of the membrane strains introduced to avoid numerical stability issues 

when drilling rotations  ̂  are used with Allman-type interpolations. The non-linear strain 

component can be written as 
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(14) 

Similar to the beam model, the equilibrium is obtained by the variational principle as 

T T ˆˆˆ ˆ ˆδ δ d d δ 0
L A

A z    ε σ d f  (15) 

where  ̂ represents the vector of strain components of the shell element. The potential 

energy functional is modified according to [31] to prevent numerical stability issues with the 

Allman type interpolations of the membrane displacements. The stress vector is obtained by 

assuming linear elastic material. 

3.1 Constitutive relations for the shell element 

For a laminate composed of n orthotropic layers, the orientation of the fibre-attached     -

axes with respect to the plate’s local    axes is determined by the angle   which is the angle 

about plate’s local  -axis (positive according to the right hand rule) between   and      

(Figure 3(a)). In that case,   is the same angle used section 2.1.  

 
(a) Shell local coordinates        (b) Laminates across thickness        (c) Global vs. local coordinates 

Figure 3: Deflections and coordinate system of the shell composed of fiber-reinforced laminates 
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Assuming that perfect interlaminar bond exists between the layers, the stress-strain 

relationship for the     layer according to the plate local axis directions can be written as [29]  
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(17) 

in which the coefficients are as given in [9-11,35]. It should be noted that the last diagonal 

term in Equation (17) is because of the modification introduced into the potential energy 

functional (also see [29]). 

4 MULTI-SCALE ANALYSIS  

Fig. 4 shows a schematic of the multi-scale analysis performed. The total domain is shown 

by    in the figure, which is modelled by a beam-type finite element. The critical part of the 

beam – depicted by    in the figure – is a subset of    and is modelled by shell elements. 

 

Figure 4: Decomposition of the analysis domain 

Based on the bridging multiscale method (BMM) the shell nodal displacement vector is 

decomposed into a coarse-scale component and a difference term. To this end, a 

decomposition matrix   is used, which projects the beam results onto the nodal points of the 

shell model, i.e.  ̂    ̅    , from which the variation of the shell nodal displacement vector 

can be written as 

ˆδ δ δ  d N d d  (18) 

in which the relation    ̅     ̅     ̅ was used. As a result, the strain vector of the 

shell model can be decomposed into two parts:  ̂   ̅    , in which the term  ̅ refers to the 

strain due to the beam formulation. Consequently, the stress vector can be decomposed in the 
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same fashion as  ̂   ̅    . By introducing these values into the variational form of the shell 

element i.e. Eq. (10), the equilibrium requires the simultaneous satisfaction of the two 

equations as 

T T T T T T T

1
ˆ ˆˆδ δ d d δ δ 0

L A

A z     d N B S σ d N f d F  
(19) 

T T T T

2
ˆˆ ˆδ δ d d δ 0

L A

A z     d B S σ d f           (20) 

The two later equations are linearized to form the basis for the finite element formulation. 

The shell solution is obtained by imposing the displacement filed of the beam element as an 

interface boundary condition for the shell element. Therefore, the procedure is as follows: 

firstly, the global problem (i.e. the beam model) is solved to result in the displacement filed   ̅  

while keeping the fine-scale solution of the local shell model fixed. Then the local model (i.e. 

the local shell) is solved by the imposition of the global displacement as interface boundary 

conditions to find values of  ̂. Two criteria are checked to ensure the convergence in each 

load step as suggested by [32] within the framework of BMM. The first criterion is due to 

geometric nonlinearity, which confirms that the global equilibrium is achieved at the end of   

iterations. Secondly, the difference in the stress vectors of the local shell and the beam model 

should vanish to ensure that the two solutions are synchronized. In each iteration, the 

difference between the stress vectors are applied to the model as a complementary force until 

this force is smaller than a predefined tolerance. 

5 APPLICATIONS  

Based on the procedure discussed in previous sections, two numerical experiments are 

performed to ensure the applicability of the method. In all cases, the results from the multi-

scale procedure are compared with those of the full shell-type model for verification purposes. 

In order to ensure that the beam-type analysis is kinematically equivalent to the shell model, 

the comparison with the constraint shell solution is also presented. The constraint shell model 

is obtained by applying multiple-point constraints (MPCs) on the nodal displacement of the 

shell model based on the decomposition matrix  , discussed in section 4. For both examples 

considered herein the material is taken as glass-epoxy for which the material properties are 

provided in table 1. 

Table 1: Values of material properties for glass-epoxy composite 

E1 E2 G12 G13 G23  12  21 

53.78 GPa 17.93 GPa 8.96 GPa 8.96 GPa 3.45 GPa 0.25 0.08 

5.1 Flexural buckling of a C- section column 

The developed method is used for the buckling analysis of a composite column as 

illustrated in Fig. 5 
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Figure 5: Dimensions, loading and the boundary conditions of the C-section column 

The analysis was performed for equal thickness angle-ply lay-ups of [0/-45/90/45]2S. Four 

equal-span beam-type elements were used for the analyses, and the shell element dimensions 

were                 in all cases. Firstly, the load versus tip deflection and rotation 

relationships were obtained only under tip loading, so as not to cause local deformation (i.e. 

       , and      as shown in Fig. 5). The buckling loads based on the linearized 

buckling analysis corresponding to beam-type, constraint-shell-type and full-shell-type 

analysis are             ,               and             , respectively. The Euler 

buckling load can be calculated from      
   (  ) ⁄ , where L is the column length and   

is the flexural rigidity of the composite cross-section about the minor principal axis, and it is 

            , based on which  can be obtained as             . 

In Figure 6, the results produced from the linear static and nonlinear analyses are shown 

based on full beam and shell-type and constraint shell-type models. All solutions agree well 

for        , and     . Additionally to        ,, when a load         is applied 

to cause local deformations, the results based on beam- and constraint shell-type analysis are 

not affected but those based on the full shell-type are significantly affected, as shown in 

Figure 6. For the multi-scale analysis, the overlapping region was first considered between 

  ̅    and  ̅         by using       elements and then considered between  ̅    and 

 ̅         by using       elements.  

 

 
 
(a) Tip horizontal deflection      (b) Tip rotation 

Figure 6: Load-deflection relations based on different modelling types 
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5.2 Flexural buckling analysis of a simply supported I-beam 

In the second case, a simply-supported beam subjected to a moment gradient is analysed. 

The dimensions of the beam and its support conditions are given in Figure 7.  

 
Figure 7: Dimensions, loading and the boundary conditions of the I-section beam 

Eight equal-span beam-type elements were used for the analyses and the shell element 

dimensions were                 in all cases. The flanges and the web were laminated 

symmetrically, and angle-ply lay-ups of [0/-45/90/45/45/90/-45/0]2S were used. The moment 

versus mid-span horizontal and vertical deflections obtained under the loading scheme are 

shown in Figure 7(b).  

 
Figure 8: Load-deflection relations based on different modelling types 

In this figure, the results of the nonlinear analyses are shown based on full beam- and 

shell-type and multi-scale models under         ,         . It can be verified that 

when     , the results based on full beam- and shell-type and multi-scale are in very good 

agreement. In order to stimulate local deformations, a force couple of         was added 

at the tips of right top and bottom flanges in opposite directions as shown in Fig. 7. In this 

case, the horizontal deflections at the mid-span increase significantly as can be seen from the 

results of the full shell-type analysis in Figure 8. In that case, the beam solution is not capable 

of capturing the behaviour due to rigid cross-section assumption. However, it can be verified 
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that multi-scale analysis results agree very well with the shell solution under local effects. For 

multi-scale analysis, the overlapping region is considered between  ̅         and 

 ̅         by using        elements. 

6 CONCLUSIONS 

In this paper, a multiscale analysis method based on the BMM was developed for the 

analysis of composite thin-walled members to incorporate the effects of local deformations on 

the global behaviour of the thin-walled member by using a shell model only within the region 

of local deformations. It was illustrated through examples that by selecting sufficiently wide 

span of the local shell model, the proposed multiscale analysis is capable to capture the 

behaviour accurately.  
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